Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.
Phys Rev Lett. 2012 May 18;108(20):205503. doi: 10.1103/PhysRevLett.108.205503. Epub 2012 May 15.
Upon shearing a microscale lithographically defined graphite mesa, the sheared section retracts spontaneously to minimize interface energy. Here, we demonstrate a sixfold symmetry of the self-retraction and provide a first experimental estimate of the frictional force involved, as direct evidence that the self-retraction is due to superlubricity, where ultralow friction occurs between incommensurate surfaces. The effect is remarkable because it occurs reproducibly under ambient conditions and over a contact area of up to 10×10 μm2, more than 7 orders of magnitude larger than previous scanning-probe-based studies of superlubricity in graphite. By analyzing the sheared interface, we show how the grain structure of highly oriented pyrolitic graphite determines the probability of self-retraction. Our results demonstrate that such self-retraction provides a novel probe of superlubricity, and the robustness of the phenomenon opens the way for practical applications of superlubricity in micromechanical systems.
当微尺度光刻定义的石墨台面被剪切时,剪切部分会自发缩回以最小化界面能。在这里,我们展示了自缩回的六重对称性,并提供了所涉及摩擦力的第一个实验估计值,这直接证明了自缩回是由于超滑,即在不同步的表面之间发生超低摩擦。这种效应非常显著,因为它在环境条件下可重复出现,并且在接触面积高达 10×10 μm2 以上的情况下发生,比以前基于扫描探针的石墨超滑研究大 7 个数量级以上。通过分析剪切界面,我们展示了高取向热解石墨的晶粒结构如何决定自缩回的概率。我们的结果表明,这种自缩回为超滑提供了一种新的探测方法,而这种现象的稳健性为超滑在微机械系统中的实际应用开辟了道路。