Liu Zhao, Yang Hang, Wang Sen, Wu Jinxiong, Ouyang Wengen, Zhang Junyan, Luo Feng
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
Adv Sci (Weinh). 2025 Jun;12(23):e2500378. doi: 10.1002/advs.202500378. Epub 2025 Apr 25.
Precise control of friction at the nanoscale is crucial for developing efficient micro/nano-electromechanical systems. This study presents a novel approach to manipulate friction in two-dimensional materials using coupled direct current (DC) and alternating current (AC) electric fields. By applying a low-amplitude AC bias atop a DC field, friction on monolayer graphene is continuously reduced without compensating the DC bias, while preserving the integrity of the graphitic interface. Theoretical analysis through the generalized Prandtl-Tomlinson model reveals a unique energy dispersion mechanism, where vertical resonance absorbs horizontal energy, minimizing sliding friction and enhancing interfacial durability. This approach addresses limitations in conventional electrically controlled friction methods, enabling precise device manipulation and offering new insights into frictional behavior and energy transmission.
在纳米尺度上精确控制摩擦对于开发高效的微纳机电系统至关重要。本研究提出了一种利用耦合直流(DC)和交流(AC)电场来操纵二维材料中摩擦的新方法。通过在直流电场之上施加低振幅交流偏置,单层石墨烯上的摩擦在不补偿直流偏置的情况下持续降低,同时保持石墨界面的完整性。通过广义普朗特 - 汤姆林森模型进行的理论分析揭示了一种独特的能量色散机制,其中垂直共振吸收水平能量,从而最小化滑动摩擦并提高界面耐久性。这种方法克服了传统电控摩擦方法的局限性,实现了对器件的精确操纵,并为摩擦行为和能量传输提供了新的见解。