Department of Conservative Dentistry, School of Dentistry, Ohu University, Fukushima, Japan.
J Periodontol. 2013 Jul;84(7):974-84. doi: 10.1902/jop.2012.120444. Epub 2012 Sep 24.
The present study aims to extend recent findings of a non-linear model of the progression of periodontitis supporting the notion that aggressive periodontitis (AgP) and chronic periodontitis (CP) are distinct clinical entities. This approach is based on the implementation of recursive partitioning analysis (RPA) to evaluate a series of immunologic parameters acting as predictors of AgP and CP.
RPA was applied to three population samples, that were retrieved from previous studies, using 17 immunologic parameters. The mean values of the parameters in control subjects were used as the cut-off points. Leave-one-out cross-validation (LOOCV) prediction errors were estimated in the proposed models, as well as the Kullback-Leibler divergence (DKL) of the distribution of positive results in AgP compared to CP and negative results in CP compared to AgP.
Seven classification trees were derived showing that the relationship of interleukin (IL)-4, IL-1, IL-2 has the highest potential to rule out or rule in AgP. On the other hand, immunoglobulin (Ig)A, IgM used to rule out AgP and cluster of differentiation 4 (CD4)/CD8, CD20 used to rule in AgP showed the least LOOCV cost. Penalizing DKL with LOOCV cost promotes the IL-4, IL-1, IL-2 model for ruling out AgP, whereas the single CD4/CD8 ratio with a lowered discrimination cut-off point was used to rule in AgP.
Although a test is unlikely to have both high sensitivity and high specificity, the use of immunologic parameters in the right model can efficiently complement a clinical examination for ruling out or ruling in AgP.
本研究旨在扩展最近关于牙周炎进展的非线性模型的发现,该模型支持侵袭性牙周炎(AgP)和慢性牙周炎(CP)是两种不同的临床实体的观点。这种方法基于递归分区分析(RPA)的实施,以评估一系列作为 AgP 和 CP 预测因子的免疫参数。
RPA 应用于从先前研究中检索到的三个人群样本,使用 17 个免疫参数。将对照受试者的参数平均值用作截止值。在提出的模型中估计了留一法交叉验证(LOOCV)预测误差,以及 AgP 与 CP 相比阳性结果的分布的 Kullback-Leibler 散度(DKL)和 CP 相比 AgP 的阴性结果。
得出了七个分类树,表明白细胞介素(IL)-4、IL-1、IL-2 的关系具有排除或纳入 AgP 的最大潜力。另一方面,用于排除 AgP 的免疫球蛋白(Ig)A、IgM 和用于纳入 AgP 的分化群 4(CD4)/CD8、CD20 显示出最小的 LOOCV 成本。用 LOOCV 成本惩罚 DKL 可促进用于排除 AgP 的 IL-4、IL-1、IL-2 模型,而用于纳入 AgP 的则是降低判别截止值的单个 CD4/CD8 比值。
尽管一项测试不太可能同时具有高灵敏度和高特异性,但在正确的模型中使用免疫参数可以有效地补充临床检查,以排除或纳入 AgP。