Suppr超能文献

在时间周期快速振荡势场中运动的量子粒子的逃逸率:一种与时间无关的方法。

Escape rate for a quantum particle moving in a time-periodic rapidly oscillating potential: a time-independent approach.

作者信息

Shit Anindita, Chattopadhyay Sudip, Chaudhuri Jyotipratim Ray

机构信息

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051102. doi: 10.1103/PhysRevE.85.051102. Epub 2012 May 1.

Abstract

We explore, in the quantum regime, the stochastic dynamics of a time-periodic, rapidly oscillating potential (having a characteristic frequency of ω) within the framework of a time-dependent system-reservoir Hamiltonian. We invoke the idea of a quantum gauge transformation in light of the standard Floquet theorem in an attempt to construct a Langevin equation (bearing a time-independent effective potential) by employing a systematic perturbative expansion in powers of ω^{-1} using the natural time-scale separation. The time-independent effective potential (corrected to ω^{-2} in leading order) that acts on the slow motion of the driven particle can be employed for trapping. We proceed further to evaluate the rate of escape of the driven particle from the metastable state in the high-temperature limit. We also envisage a resonance phenomena, a true hallmark of the system-reservoir quantization. This development would thus serve as a model template to investigate the trapping mechanism, as well as an appropriate analog to understand the dynamics of a fluctuation-induced escape process from the trap.

摘要

在量子体系中,我们在含时系统 - 库哈密顿量框架下,探讨一个具有时间周期性、快速振荡势(特征频率为ω)的随机动力学。鉴于标准弗洛凯定理,我们引入量子规范变换的概念,试图通过利用自然时间尺度分离,以ω⁻¹的幂次进行系统微扰展开来构建一个朗之万方程(带有与时间无关的有效势)。作用于受驱粒子慢运动的与时间无关的有效势(在主导阶修正到ω⁻²)可用于捕获。我们进一步评估在高温极限下受驱粒子从亚稳态逃逸的速率。我们还设想了一种共振现象,这是系统 - 库量子化的一个真正标志。因此,这一进展将作为研究捕获机制的模型模板,以及理解从陷阱中波动诱导逃逸过程动力学的合适类比。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验