Suppr超能文献

二维准周期势中具有最小粒子数的物质波孤子。

Matter-wave solitons with the minimum number of particles in two-dimensional quasiperiodic potentials.

作者信息

Burlak Gennadiy, Malomed Boris A

机构信息

Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):057601. doi: 10.1103/PhysRevE.85.057601. Epub 2012 May 18.

Abstract

We report results of systematic numerical studies of two-dimensional matter-wave soliton families supported by an external potential, in a vicinity of the junction between stable and unstable branches of the families, where the norm of the solution attains a minimum, facilitating the creation of the soliton. The model is based on the Gross-Pitaevskii equation for the self-attractive condensate loaded into a quasiperiodic (QP) optical lattice (OL). The same model applies to spatial optical solitons in QP photonic crystals. Dynamical properties and stability of the solitons are analyzed with respect to variations of the depth and wave number of the OL. In particular, it is found that the single-peak solitons are stable or not in exact accordance with the Vakhitov-Kolokolov (VK) criterion, while double-peak solitons, which are found if the OL wave number is small enough, are always unstable against splitting.

摘要

我们报告了对由外部势支持的二维物质波孤子族进行系统数值研究的结果,研究区域在孤子族稳定分支与不稳定分支的交界处附近,在此处解的范数达到最小值,这有利于孤子的产生。该模型基于描述加载到准周期(QP)光学晶格(OL)中的自吸引凝聚体的格罗斯 - 皮塔耶夫斯基方程。同一模型适用于QP光子晶体中的空间光学孤子。针对OL的深度和波数变化,分析了孤子的动力学性质和稳定性。特别地,发现单峰孤子的稳定性与瓦希托夫 - 科洛科洛夫(VK)判据完全一致,而当OL波数足够小时出现的双峰孤子,总是不稳定而会分裂。

相似文献

1
Matter-wave solitons with the minimum number of particles in two-dimensional quasiperiodic potentials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):057601. doi: 10.1103/PhysRevE.85.057601. Epub 2012 May 18.
2
Three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056605. doi: 10.1103/PhysRevE.69.056605. Epub 2004 May 12.
3
Matter-wave solitons in nonlinear optical lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046610. doi: 10.1103/PhysRevE.72.046610. Epub 2005 Oct 24.
4
Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026601. doi: 10.1103/PhysRevE.73.026601. Epub 2006 Feb 2.
5
7
Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036607. doi: 10.1103/PhysRevE.74.036607. Epub 2006 Sep 13.
8
Probing non-locality of interactions in a Bose-Einstein condensate using solitons.
J Phys Condens Matter. 2018 Nov 14;30(45):455602. doi: 10.1088/1361-648X/aae33f.
9
Spatial solitons under competing linear and nonlinear diffractions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026606. doi: 10.1103/PhysRevE.85.026606. Epub 2012 Feb 27.
10
Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
Opt Express. 2011 Aug 29;19(18):17834-51. doi: 10.1364/OE.19.017834.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验