Burlak Gennadiy, Malomed Boris A
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):057601. doi: 10.1103/PhysRevE.85.057601. Epub 2012 May 18.
We report results of systematic numerical studies of two-dimensional matter-wave soliton families supported by an external potential, in a vicinity of the junction between stable and unstable branches of the families, where the norm of the solution attains a minimum, facilitating the creation of the soliton. The model is based on the Gross-Pitaevskii equation for the self-attractive condensate loaded into a quasiperiodic (QP) optical lattice (OL). The same model applies to spatial optical solitons in QP photonic crystals. Dynamical properties and stability of the solitons are analyzed with respect to variations of the depth and wave number of the OL. In particular, it is found that the single-peak solitons are stable or not in exact accordance with the Vakhitov-Kolokolov (VK) criterion, while double-peak solitons, which are found if the OL wave number is small enough, are always unstable against splitting.
我们报告了对由外部势支持的二维物质波孤子族进行系统数值研究的结果,研究区域在孤子族稳定分支与不稳定分支的交界处附近,在此处解的范数达到最小值,这有利于孤子的产生。该模型基于描述加载到准周期(QP)光学晶格(OL)中的自吸引凝聚体的格罗斯 - 皮塔耶夫斯基方程。同一模型适用于QP光子晶体中的空间光学孤子。针对OL的深度和波数变化,分析了孤子的动力学性质和稳定性。特别地,发现单峰孤子的稳定性与瓦希托夫 - 科洛科洛夫(VK)判据完全一致,而当OL波数足够小时出现的双峰孤子,总是不稳定而会分裂。