You X-M, Vlasov A Yu, Anton L, Masters A J
School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061706. doi: 10.1103/PhysRevE.85.061706. Epub 2012 Jun 19.
We use a high level virial expansion to investigate the properties of the isotropic and nematic phases of the hard spheroid fluid. We use the Monte Carlo techniques described previously to calculate the virial coefficients up to seventh order and we represent the dependence of these coefficients on particle orientations via a spherical harmonic expansion. The expansion coefficients are determined using Lebedev quadrature which carries out the angular integration required exactly. For fairly spherical spheroids (1/3<a/b<3, where a and b are the semiaxes of the spheroid) the virial expansion appears to be convergent in both the isotropic and nematic phases up to high density. For more aspherical particles, the predictions varied in a more erratic fashion upon increasing the number of virials. The use of a finite angular basis set to represent the orientationally dependent virial coefficients could be a contributory cause to this.
我们使用高阶维里展开来研究硬椭球体流体的各向同性相和向列相的性质。我们使用先前描述的蒙特卡罗技术来计算直至七阶的维里系数,并通过球谐展开来表示这些系数对粒子取向的依赖性。展开系数使用勒贝德夫求积法确定,该方法精确地进行所需的角度积分。对于相当球形的椭球体(1/3 < a/b < 3,其中a和b是椭球体的半轴),维里展开在各向同性相和向列相中似乎直到高密度都是收敛的。对于更非球形的粒子,随着维里数目的增加,预测以更不稳定的方式变化。使用有限的角基集来表示与取向相关的维里系数可能是造成这种情况的一个原因。