Vandecan Yves, Blossey Ralf
Interdisciplinary Research Institute, USR 3078 CNRS and Université de Sciences et de Technologies de Lille, Parc de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061920. doi: 10.1103/PhysRevE.85.061920. Epub 2012 Jun 22.
Chromatin remodeling plays a crucial role in the activation or repression of transcription of eukaryotic genes. The chromatin remodeler ACF acts as a dimeric, processive motor to evenly space nucleosomes, favoring repression of gene transcription. Single-molecule experiments have established that ACF moves the nucleosome more efficiently towards the longer flanking DNA than towards the shorter flanking DNA, thereby centering an initially ill-positioned nucleosome on DNA substrates. In this paper we present a one-motor model with nucleosomal repositioning rates dependent on the DNA flanking length. The corresponding master equation is solved analytically with experimentally relevant parameter values. The velocity profile and the effective diffusion constant for nucleosome sliding, computed from the probability distributions, are in accordance with available experimental data. In order to address the observed kinetic pauses in experimental Förster Resonance Energy Transfer profiles, we extend the master equation to account for transitions between explicit motor states, i.e., adenosine triphosphate (ATP) loading and ATP hydrolysis in both ACF motors. The results of this extended two-motor model are compared to the previous effective one-motor model and allow insights into the role of the synchronization of the two motors acting on the nucleosome.
染色质重塑在真核基因转录的激活或抑制中起着关键作用。染色质重塑因子ACF作为一种二聚体的、进行性的分子马达,使核小体均匀分布,有利于基因转录的抑制。单分子实验表明,ACF将核小体向较长的侧翼DNA移动比向较短的侧翼DNA移动更有效,从而使最初定位不佳的核小体在DNA底物上居中。在本文中,我们提出了一个单分子马达模型,其中核小体重新定位速率取决于DNA侧翼长度。利用实验相关的参数值对相应的主方程进行了解析求解。根据概率分布计算出的核小体滑动速度分布和有效扩散常数与现有实验数据一致。为了解决在实验Förster共振能量转移图谱中观察到的动力学停顿,我们扩展了主方程,以考虑明确的分子马达状态之间的转换,即ACF两个分子马达中的三磷酸腺苷(ATP)加载和ATP水解。将这个扩展的双分子马达模型的结果与之前的有效单分子马达模型进行了比较,从而深入了解了作用于核小体的两个分子马达同步的作用。