Suppr超能文献

时态网络的误差与攻击脆弱性

Error and attack vulnerability of temporal networks.

作者信息

Trajanovski S, Scellato S, Leontiadis I

机构信息

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066105. doi: 10.1103/PhysRevE.85.066105. Epub 2012 Jun 6.

Abstract

The study of real-world communication systems via complex network models has greatly expanded our understanding on how information flows, even in completely decentralized architectures such as mobile wireless networks. Nonetheless, static network models cannot capture the time-varying aspects and, therefore, various temporal metrics have been introduced. In this paper, we investigate the robustness of time-varying networks under various failures and intelligent attacks. We adopt a methodology to evaluate the impact of such events on the network connectivity by employing temporal metrics in order to select and remove nodes based on how critical they are considered for the network. We also define the temporal robustness range, a new metric that quantifies the disruption caused by an attack strategy to a given temporal network. Our results show that in real-world networks, where some nodes are more dominant than others, temporal connectivity is significantly more affected by intelligent attacks than by random failures. Moreover, different intelligent attack strategies have a similar effect on the robustness: even small subsets of highly connected nodes act as a bottleneck in the temporal information flow, becoming critical weak points of the entire system. Additionally, the same nodes are the most important across a range of different importance metrics, expressing the correlation between highly connected nodes and those that trigger most of the changes in the optimal information spreading. Contrarily, we show that in randomly generated networks, where all the nodes have similar properties, random errors and intelligent attacks exhibit similar behavior. These conclusions may help us in design of more robust systems and fault-tolerant network architectures.

摘要

通过复杂网络模型对现实世界通信系统的研究极大地扩展了我们对信息流动方式的理解,即使是在诸如移动无线网络这样完全去中心化的架构中。尽管如此,静态网络模型无法捕捉时变特性,因此引入了各种时间度量。在本文中,我们研究了时变网络在各种故障和智能攻击下的鲁棒性。我们采用一种方法,通过使用时间度量来评估此类事件对网络连通性的影响,以便根据节点对网络的关键程度来选择和移除节点。我们还定义了时间鲁棒性范围,这是一种新的度量,用于量化攻击策略对给定时间网络造成的破坏。我们的结果表明,在现实世界的网络中,一些节点比其他节点更具主导性,时间连通性受智能攻击的影响明显大于随机故障。此外,不同的智能攻击策略对鲁棒性有类似的影响:即使是高度连通节点的小子集也会成为时间信息流中的瓶颈,成为整个系统的关键弱点。此外,在一系列不同的重要性度量中,相同的节点最为重要,这表明高度连通节点与那些触发最优信息传播中大部分变化的节点之间存在相关性。相反,我们表明,在随机生成的网络中,所有节点具有相似的属性,随机错误和智能攻击表现出相似的行为。这些结论可能有助于我们设计更鲁棒的系统和容错网络架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验