Suppr超能文献

非平衡结构网络中的社区识别

Community identification in networks with unbalanced structure.

作者信息

Zhang Shuqin, Zhao Hongyu

机构信息

Center for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066114. doi: 10.1103/PhysRevE.85.066114. Epub 2012 Jun 13.

Abstract

Community (module) structure is a common and important property of many types of networks, such as social networks and biological networks. Several classes of algorithms have been proposed for community structure detection and identification, including clustering techniques, modularity optimization, and other methods. Among these methods, the modularity optimization method has attracted a great deal of attention and much related research has been published. However, the existing modularity optimization method does not perform well in the presence of unbalanced community structures. In this paper, we introduce a metric to characterize the community structure better than other metrics in this situation, and we propose a method to infer the number of communities, which may solve the resolution limit problem. We then develop an algorithm for community structure identification based on eigendecompositions, and we give both simulated and real data examples to illustrate the better performance of our approach.

摘要

社区(模块)结构是许多类型网络(如社交网络和生物网络)共有的重要属性。已经提出了几类用于社区结构检测和识别的算法,包括聚类技术、模块度优化和其他方法。在这些方法中,模块度优化方法受到了广泛关注,并且已经发表了许多相关研究。然而,现有的模块度优化方法在存在不平衡社区结构的情况下表现不佳。在本文中,我们引入一种度量,在这种情况下比其他度量能更好地表征社区结构,并且我们提出一种推断社区数量的方法,这可能解决分辨率极限问题。然后我们开发一种基于特征分解的社区结构识别算法,并给出模拟数据和真实数据示例来说明我们方法的更好性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验