Suppr超能文献

基于网络整合的基因共表达网络功能模块分析

Functional Module Analysis for Gene Coexpression Networks with Network Integration.

作者信息

Zhang Shuqin, Zhao Hongyu, Ng Michael K

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2015 Sep-Oct;12(5):1146-60. doi: 10.1109/TCBB.2015.2396073.

Abstract

Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

摘要

网络已成为研究不同基因、蛋白质和其他小分子之间复杂相互作用的通用工具。模块作为许多生物网络的基本属性已得到广泛研究,并且已经提出了许多计算方法来识别单个网络中的模块。然而,在许多情况下,由于数据中的噪声或构建生物网络时参数的调整,单个网络不足以进行模块分析。大量生物网络的可用性使得网络整合研究成为可能。通过整合这些网络,可以从不同组织构建的网络中导出针对某些特定疾病的更具信息性的模块,并推断出不同疾病的一致因素。在本文中,我们开发了一种在不同条件下从多个网络中识别模块的有效方法。该问题被表述为一个优化模型,它将每个单个网络中的模块识别与来自不同网络的模块对齐结合在一起。提出了一种基于特征向量计算的近似算法。我们的方法优于现有方法,特别是在模拟研究中多个网络中的潜在模块不同时。我们还将我们的方法应用于两组人类基因共表达网络,其中一组针对三种不同癌症,另一组针对病态肥胖患者的三种组织。我们分别识别出了具有三个完全子图的13个模块和具有两个完全子图的11个模块。通过基因本体富集和KEGG通路富集分析对这些模块进行了验证。我们还表明,其他研究人员已经探讨了大多数对应疾病模块的主要功能,这可能为进一步通过实验研究这些模块提供理论基础。

相似文献

1
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Sep-Oct;12(5):1146-60. doi: 10.1109/TCBB.2015.2396073.
2
An efficient algorithm for detecting frequent subgraphs in biological networks.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i200-7. doi: 10.1093/bioinformatics/bth919.
3
Detecting functional modules in the yeast protein-protein interaction network.
Bioinformatics. 2006 Sep 15;22(18):2283-90. doi: 10.1093/bioinformatics/btl370. Epub 2006 Jul 12.
4
Semantic integration to identify overlapping functional modules in protein interaction networks.
BMC Bioinformatics. 2007 Jul 24;8:265. doi: 10.1186/1471-2105-8-265.
6
Identifying functional modules in protein-protein interaction networks: an integrated exact approach.
Bioinformatics. 2008 Jul 1;24(13):i223-31. doi: 10.1093/bioinformatics/btn161.
7
Fitting a geometric graph to a protein-protein interaction network.
Bioinformatics. 2008 Apr 15;24(8):1093-9. doi: 10.1093/bioinformatics/btn079. Epub 2008 Mar 14.
8
A structural approach for finding functional modules from large biological networks.
BMC Bioinformatics. 2008 Aug 12;9 Suppl 9(Suppl 9):S19. doi: 10.1186/1471-2105-9-S9-S19.
10
Identifying similar functional modules by a new hybrid spectral clustering method.
IET Syst Biol. 2012 Oct;6(5):175-86. doi: 10.1049/iet-syb.2010.0066.

引用本文的文献

4
Multiview clustering of multi-omics data integration by using a penalty model.
BMC Bioinformatics. 2022 Jul 21;23(1):288. doi: 10.1186/s12859-022-04826-4.
6
Using "-omics" Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field.
Curr Osteoporos Rep. 2021 Aug;19(4):369-380. doi: 10.1007/s11914-021-00684-w. Epub 2021 Jun 14.
7
Clustering of cancer data based on Stiefel manifold for multiple views.
BMC Bioinformatics. 2021 May 25;22(1):268. doi: 10.1186/s12859-021-04195-4.
9
Estimation of gender-specific connectional brain templates using joint multi-view cortical morphological network integration.
Brain Imaging Behav. 2021 Aug;15(4):2081-2100. doi: 10.1007/s11682-020-00404-5. Epub 2020 Oct 21.
10
Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach.
PLoS One. 2019 May 6;14(5):e0216068. doi: 10.1371/journal.pone.0216068. eCollection 2019.

本文引用的文献

1
Normalized modularity optimization method for community identification with degree adjustment.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052802. doi: 10.1103/PhysRevE.88.052802. Epub 2013 Nov 4.
2
3
The role of the immune system in obesity and insulin resistance.
J Obes. 2013;2013:616193. doi: 10.1155/2013/616193. Epub 2013 Mar 21.
5
Community identification in networks with unbalanced structure.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066114. doi: 10.1103/PhysRevE.85.066114. Epub 2012 Jun 13.
6
Common community structure in time-varying networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056110. doi: 10.1103/PhysRevE.85.056110. Epub 2012 May 10.
7
Obesity impairs wound closure through a vasculogenic mechanism.
Wound Repair Regen. 2012 Jul-Aug;20(4):512-22. doi: 10.1111/j.1524-475X.2012.00803.x. Epub 2012 Jun 7.
9
Obesity, inflammation and the immune system.
Proc Nutr Soc. 2012 May;71(2):332-8. doi: 10.1017/S0029665112000092. Epub 2012 Mar 20.
10
Mechanisms of inflammatory responses in obese adipose tissue.
Annu Rev Nutr. 2012 Aug 21;32:261-86. doi: 10.1146/annurev-nutr-071811-150623. Epub 2012 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验