Suppr超能文献

一个密度依赖型反应扩散模型的自相似解

Self-similar solutions to a density-dependent reaction-diffusion model.

作者信息

Ngamsaad Waipot, Khompurngson Kannika

机构信息

Division of Physics, School of Science, University of Phayao, Mueang Phayao, Phayao 56000, Thailand.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066120. doi: 10.1103/PhysRevE.85.066120. Epub 2012 Jun 18.

Abstract

In this paper, we investigated a density-dependent reaction-diffusion equation, u(t)=(u(m))(xx)+u-u(m). This equation is known as the extension of the Fisher or Kolmogoroff-Petrovsky-Piscounoff equation, which is widely used in population dynamics, combustion theory, and plasma physics. By employing a suitable transformation, this equation was mapped to the anomalous diffusion equation where the nonlinear reaction term was eliminated. Due to its simpler form, some exact self-similar solutions with compact support have been obtained. The solutions, evolving from an initial state, converge to the usual traveling wave at a certain transition time. Hence, the connection between the self-similar solution and the traveling wave solution is quite clear from these results. Moreover, the solutions were found in a manner that propagates either to the right or to the left. Furthermore, the two solutions form a symmetric solution, expanding in both directions. Applications to spatiotemporal pattern formation in biological populations is discussed.

摘要

在本文中,我们研究了一个密度依赖的反应扩散方程,(u_t = (u^m)_{xx} + u - u^m)。该方程被认为是Fisher方程或Kolmogoroff-Petrovsky-Piscounoff方程的扩展,广泛应用于种群动力学、燃烧理论和等离子体物理学。通过采用适当的变换,该方程被映射到消除了非线性反应项的反常扩散方程。由于其形式更简单,已获得了一些具有紧支集的精确自相似解。这些解从初始状态演化,在某个过渡时间收敛到通常的行波。因此,从这些结果中可以清楚地看到自相似解与行波解之间的联系。此外,解以向右或向左传播的方式被找到。此外,这两个解形成一个对称解,向两个方向扩展。还讨论了其在生物种群时空模式形成中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验