Gupta Shamik, Potters Max, Ruffo Stefano
Laboratoire de Physique de l'École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d'Italie, 69364 Lyon cédex 07, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066201. doi: 10.1103/PhysRevE.85.066201. Epub 2012 Jun 4.
We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α of the power law is taken in the range 0≤α<1. The oscillator frequency distribution is symmetric about its mean (taken to be zero) and is nonincreasing on [0,∞). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times all the nonzero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.
我们研究了位于一维周期晶格位点上的仅相位振荡器系统中的同步现象。振荡器之间的相互作用强度随着沿晶格长度方向分离的幂律衰减,并通过一个与尺寸相关的常数进行归一化。幂律的指数α取值范围为0≤α<1。振荡器频率分布关于其均值(设为零)对称,且在[0,∞)上非递增。在连续极限下,振荡器的局部密度随时间演化遵循连续性方程,该方程表达了在动力学过程中每个频率的振荡器数量守恒。这个方程允许一个在相位和晶格空间上均一的非同步状态作为平稳解。我们对该状态进行线性稳定性分析,结果表明当它不稳定时,不同空间傅里叶模式的涨落具有不同的稳定性阈值,超过该阈值后它们会随时间指数增长,增长速率取决于傅里叶模式。然而,数值模拟表明,在长时间情况下,所有非零傅里叶模式都会随时间衰减,而只有零傅里叶模式(即“平均场”模式)会随时间增长,从而主导不稳定性过程并驱动系统进入同步状态。我们的理论分析得到了广泛数值模拟的支持。