Holmes C A, Meaney C P, Milburn G J
Centre for Engineered Quantum Systems, School of Mathematical and Physical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066203. doi: 10.1103/PhysRevE.85.066203. Epub 2012 Jun 5.
Using amplitude equations, we show that groups of identical nanomechanical resonators, interacting with a common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to the cavity with a strength dependent on the squared sum of the individual mechanical-microwave couplings. Classically this system is dominated by periodic behavior which, when analyzed using amplitude equations, can be shown to exhibit multistability. In contrast, groups of sufficiently dissimilar nanomechanical oscillators may lose synchronization and oscillate out of phase at significantly higher amplitudes. Further, the method by which synchronization is lost resembles that for large amplitude forcing which is not of the Kuramoto form.
利用振幅方程,我们表明,与腔微波场的一个共同模式相互作用的相同纳米机械谐振器组会同步形成一个单一的机械模式,该模式与腔的耦合强度取决于各个机械 - 微波耦合平方和。经典地,该系统由周期性行为主导,当使用振幅方程进行分析时,可显示出多稳定性。相比之下,足够不同的纳米机械振荡器组可能会失去同步,并在显著更高的振幅下异相振荡。此外,失去同步的方式类似于非Kuramoto形式的大振幅强迫的方式。