School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Phys Rev Lett. 2012 Sep 7;109(10):105303. doi: 10.1103/PhysRevLett.109.105303. Epub 2012 Sep 6.
We discuss the emergence of rings of zero-energy excitations in momentum space for superfluid phases of ultracold fermions when spin-orbit effects, Zeeman fields, and interactions are varied. We show that phases containing rings of nodes possess nontrivial topological invariants, and that phase transitions between distinct topological phases belong to the Lifshitz class. Upon crossing phase boundaries, existing massless Dirac fermions in the gapless phase annihilate to produce bulk zero-mode Majorana fermions at phase boundaries, and then become massive Dirac fermions in the gapped phase. We characterize these tunable topological phase transitions via several spectroscopic properties, including excitation spectrum, spectral function, and momentum distribution.
我们讨论了当超冷费米子的自旋轨道效应、塞曼场和相互作用发生变化时,动量空间中超流相中环零能激发的出现。我们表明,包含节点环的相具有非平凡的拓扑不变量,并且不同拓扑相之间的相变属于 Lifshitz 类。在穿过相界时,无隙相中的现有无质量狄拉克费米子湮灭,在相界处产生体零模马约拉纳费米子,然后在有隙相中变为有质量的狄拉克费米子。我们通过几个光谱特性,包括激发谱、谱函数和动量分布,来描述这些可调谐的拓扑相变。