Escaff Daniel, Harbola Upendra, Lindenberg Katja
Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Avenida San Carlos de Apoquindo 2200, Santiago, Chile.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011131. doi: 10.1103/PhysRevE.86.011131. Epub 2012 Jul 27.
We present a model of identical coupled two-state stochastic units, each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition.
我们提出了一个由相同的耦合双态随机单元组成的模型,其中每个单元单独来看都受固定不应期的支配。单元之间的非线性耦合直接影响不应期,此时不应期取决于系统的全局状态,因此其本身也可能随时间变化。在弱耦合情况下,阵列会进入静止的稳态。耦合强度的增加会导致鞍结分岔,超过这一分岔点,静止状态会与非线性相干振荡的稳定极限环共存。我们明确确定了这一转变的临界耦合常数。