Wang Kun, Song Chaoming, Wang Ping, Makse Hernán A
Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011305. doi: 10.1103/PhysRevE.86.011305. Epub 2012 Jul 25.
This paper illustrates how the tools of equilibrium statistical mechanics can help to describe a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J point) in frictionless packings. Using the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of ergodicity and "thermalization" at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the maximum entropy principle for grains. (iii) The intensive variables A and X describe the approach to jamming through a series of scaling relations as A → 0+ and X → 0-. Due to the force-strain coupling in the interparticle forces, the jamming transition is probed thermodynamically by a "jamming temperature" T(J) composed of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in static observables like pressure and volume, and we discuss other critical scenarios for the jamming transition. (v) Finally, we elaborate on a comparison with relevant studies by Gao, Blawzdziewicz, and O'Hern [Phys. Rev. E 74, 061304 (2006)], showing a breakdown of equiprobability of microstates obtained via fast quenches. A network analysis of the energy landscape reveals the origin of the inhomogeneities in the uneven distribution of the areas of the basins. Such inhomogeneities are also found in other out-of-equilibrium systems like Lennard-Jones glasses and their existence does not preclude the use of statistical mechanics for jammed systems.
无摩擦颗粒材料中的堵塞转变。爱德华兹的想法包括通过熵、压缩性(X)和应力能(A)(两个类似温度的变量)的热力学概念,提出体积和应力涨落的统计系综。我们发现爱德华兹热力学能够描述无摩擦堆积中的堵塞转变((J)点)。使用系综形式,我们阐明了以下几点:(i)通过比较动力学获得的堵塞构型的统计性质与势能景观中极小值系综上平均的统计性质,来检验体积 - 应力联合系综,以此作为遍历性的检验。两种方法之间的一致性支持了在给定应力能和压缩性下的遍历性和“热化”的观点。(ii)微正则系综分析支持颗粒的最大熵原理。(iii)当(A→0 +)和(X→0 -)时,强度变量(A)和(X)通过一系列标度关系描述了接近堵塞的过程。由于粒子间力中的力 - 应变耦合,堵塞转变通过由(A)和(X)贡献组成的“堵塞温度”(T(J))进行热力学探测。(iv)热力学框架通过在压力和体积等静态可观测量中显示堵塞时不存在临界涨落,揭示了堵塞相变的阶次,并且我们讨论了堵塞转变的其他临界情形。(v)最后,我们详细阐述了与高、布劳兹德维茨和奥赫恩[《物理评论E》74, 061304 (2006)]相关研究的比较,展示了通过快速淬火获得的微观态等概率性的失效。对能量景观的网络分析揭示了盆地面积不均匀分布中不均匀性的起源。在诸如 Lennard - Jones 玻璃等其他非平衡系统中也发现了这种不均匀性,并且它们的存在并不妨碍对堵塞系统使用统计力学。