Magnet C, Kuzhir P, Bossis G, Meunier A, Suloeva L, Zubarev A
Laboratory of Condensed Matter Physics, University of Nice Sophia Antipolis, CNRS UMR 7663, Parc Valrose, 06108 Nice Cedex 2, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011404. doi: 10.1103/PhysRevE.86.011404. Epub 2012 Jul 13.
If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters--the initial nanoparticle concentration (φ(0)) and the magnetic-to-thermal energy ratio (α)--and the three accumulation regimes are mapped onto a α-φ(0) phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.
如果将微米级和纳米级磁性颗粒的悬浮液置于均匀磁场中,纳米颗粒会被吸引到微米颗粒上,并在它们周围形成厚厚的各向异性晕圈(云状物)。这样的云状物会阻碍微米颗粒的靠近,并导致它们之间产生有效的排斥力[M. T. 洛佩斯 - 洛佩斯、A. 尤. 祖巴列夫和G. 博西,《软物质》6, 4346 (2010)]。在本文中,我们对纳米颗粒浓度分布以及单个磁化微球周围纳米颗粒云的平衡形状进行了详细的实验和理论研究,同时考虑了纳米颗粒之间的相互作用。我们表明,在足够强的磁场下,纳米颗粒集合体会经历气 - 液相转变,使得致密的液相在微球的磁极周围凝聚,而稀薄的气相占据悬浮液的其余体积。微球周围纳米颗粒的积累由两个无量纲参数——初始纳米颗粒浓度(φ(0))和磁能与热能之比(α)——决定,并且三种积累模式被映射到α - φ(0)相图上。我们的局部热力学平衡方法与关于纳米颗粒云平衡形状的实验给出了半定量的一致性。这项工作的结果可能对双峰磁流变流体以及生物分析和水净化系统中使用的磁分离技术的发展有用。