de Franciscis Sebastiano, d'Onofrio Alberto
Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, I20141 Milano, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021118. doi: 10.1103/PhysRevE.86.021118. Epub 2012 Aug 16.
In this work, we introduce two spatiotemporal colored bounded noises, based on the zero-dimensional Cai-Lin and Tsallis-Borland noises. Then we study and characterize the dependence of the defined stochastic processes on both a temporal correlation parameter τ and a spatial coupling parameter λ. In particular, we found that varying λ may induce a transition of the distribution of the noise from bimodality to unimodality. With the aim of investigating the role played by bounded noises in nonlinear dynamical systems, we analyze the behavior of the real Ginzburg-Landau time-varying model additively perturbed by such noises. The observed phase transition phenomenology is quite different from that observed when the perturbations are unbounded. In particular, we observed an inverse order-to-disorder transition and a reentrant transition, with dependence on the specific type of bounded noise.
在这项工作中,我们基于零维蔡 - 林噪声和Tsallis - 博兰德噪声引入了两种时空有色有界噪声。然后我们研究并刻画了所定义的随机过程对时间相关参数τ和空间耦合参数λ的依赖性。特别地,我们发现改变λ可能会导致噪声分布从双峰态转变为单峰态。为了研究有界噪声在非线性动力系统中所起的作用,我们分析了受此类噪声加性扰动的实金兹堡 - 朗道时变模型的行为。观察到的相变现象学与扰动无界时观察到的现象学有很大不同。特别地,我们观察到了逆有序 - 无序转变和重入转变,这取决于有界噪声的具体类型。