Tränkle Benjamin, Speidel Michael, Rohrbach Alexander
Laboratory for Bio- and Nano-Photonics, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021401. doi: 10.1103/PhysRevE.86.021401. Epub 2012 Aug 1.
The interaction of two diffusing particles is strongly influenced by their hydrodynamic coupling. At a tracking rate of 10 kHz we are able to measure the 3D trajectories of two colloidal spheres in a single harmonic potential, which was generated by scanning line optical tweezers. This common potential enables tilting, rotational, and translational dynamics of the spheres, which we analyzed via the spheres position cross-correlations C(τ) over a time range of 10(-4)-2 s. We found that the dynamic interaction of the colloids is controlled by short-range surface forces F(s), which are attractive in one direction and repulsive in the other two directions. This unexpected behavior is supported by a theoretical model using two Langevin equations, which decouple for linear F(s), allowing a description with autocorrelation functions for collective and relative motions. We further demonstrate that variations in salt concentration and reaction volumes significantly influence C(τ) and the mean contact times between the particles, which may offer new insights into biological particle interaction.
两个扩散粒子之间的相互作用受到它们流体动力学耦合的强烈影响。在10 kHz的跟踪速率下,我们能够测量处于由扫描线光镊产生的单一谐波势中的两个胶体球的三维轨迹。这种共同的势使得球体能够进行倾斜、旋转和平移动力学,我们通过在10^(-4)-2 s的时间范围内对球体位置互相关C(τ)进行分析。我们发现,胶体的动态相互作用由短程表面力F(s)控制,该力在一个方向上是吸引性的,而在另外两个方向上是排斥性的。使用两个朗之万方程的理论模型支持了这种意外行为,对于线性F(s),这两个方程解耦,从而允许用集体运动和相对运动的自相关函数进行描述。我们进一步证明,盐浓度和反应体积的变化会显著影响C(τ)以及粒子之间的平均接触时间,这可能为生物粒子相互作用提供新的见解。