Suppr超能文献

基于腔方法的算法在图上的奖品收集斯坦纳树问题中的性能。

Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs.

作者信息

Biazzo Indaco, Braunstein Alfredo, Zecchina Riccardo

机构信息

Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026706. doi: 10.1103/PhysRevE.86.026706. Epub 2012 Aug 13.

Abstract

We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

摘要

我们研究了一种从用于图上的奖品收集斯坦纳树(PCST)问题的腔方法派生而来的算法的行为。该算法基于腔方程的零温度极限,因此形式上很简单(通过迭代求解的不动点方程)且具有分布式(可并行化)特点。我们在广泛的现有基准测试、网络和随机图上与最先进的算法进行了详细比较。具体而言,我们考虑了戈曼斯 - 威廉姆森启发式算法的一种增强变体以及dhea求解器,后者是一种基于分支定界整数线性规划的方法。比较结果表明,在大多数大型实例中,腔算法在运行时间和解的质量方面均优于这两种算法。最后,我们证明了我们算法所提供的解的一些最优性性质,包括在戈曼斯 - 威廉姆森变体中定义的两种后处理程序下的最优性以及在某些极限情况下的全局最优性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验