Suppr超能文献

基于消息传递的随机图上的边不相交路径问题

The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

作者信息

Altarelli Fabrizio, Braunstein Alfredo, Dall'Asta Luca, De Bacco Caterina, Franz Silvio

机构信息

DISAT and Center for Computational Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy.

出版信息

PLoS One. 2015 Dec 28;10(12):e0145222. doi: 10.1371/journal.pone.0145222. eCollection 2015.

Abstract

We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.

摘要

我们提出一种基于零温度腔方程求解图上一系列边不相交路径问题的消息传递算法。边不相交路径问题在一般的路由背景下很重要,它可以通过在一个独特的框架中纳入流量优化和总路径长度最小化来定义。通过利用将星型图上的广义边不相交路径问题映射到加权最大匹配问题,可以有效地执行腔方程的计算。我们在各种类型的随机图上进行了广泛的数值模拟,以测试在路径长度最小化和可容纳路径数量最大化方面的性能。此外,我们通过与文献中发现的最新算法和结果进行比较,在各种图的基准实例上测试性能。在考虑非平凡实例时,我们的消息传递算法在可容纳路径数量方面总是优于其他算法(否则它会给出相同的平凡结果)。值得注意的是,在带有网格的基准测试中,相对于所采用的其他方法,性能有最大的提升,而在这种情况下,消息传递背后的有效性假设预计会变差。在这些情况下,即使精确的消息传递方程不收敛,通过引入一个强化参数来迫使收敛到一个次优解,我们能够始终优于其他算法,在可容纳路径方面性能提升峰值达到27%。在随机图上,我们通过数值观察到两个不同的区域:一个区域中所有路径都可以被容纳,另一个区域则不行。我们还研究了要容纳的路径数量及其最小总长度的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea29/4699204/c070aa4866b5/pone.0145222.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验