Chachra Ricky, Transtrum Mark K, Sethna James P
Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026712. doi: 10.1103/PhysRevE.86.026712. Epub 2012 Aug 31.
We use an extension of the van der Pol oscillator as an example of a system with multiple time scales to study the susceptibility of its trajectory to polynomial perturbations in the dynamics. A striking feature of many nonlinear, multiparameter models is an apparently inherent insensitivity to large-magnitude variations in certain linear combinations of parameters. This phenomenon of "sloppiness" is quantified by calculating the eigenvalues of the Hessian matrix of the least-squares cost function. These typically span many orders of magnitude. The van der Pol system is no exception: Perturbations in its dynamics show that most directions in parameter space weakly affect the limit cycle, whereas only a few directions are stiff. With this study, we show that separating the time scales in the van der Pol system leads to a further separation of eigenvalues. Parameter combinations which perturb the slow manifold are stiffer and those which solely affect the jumps in the dynamics are sloppier.
我们以范德波尔振荡器的一种扩展形式为例,该系统具有多个时间尺度,用于研究其轨迹对动力学中多项式扰动的敏感性。许多非线性多参数模型的一个显著特征是,对于某些参数线性组合中的大幅度变化,它们显然具有内在的不敏感性。通过计算最小二乘代价函数的海森矩阵的特征值,可以量化这种“松散性”现象。这些特征值通常跨越多个数量级。范德波尔系统也不例外:其动力学中的扰动表明,参数空间中的大多数方向对极限环的影响较弱,而只有少数方向是刚性的。通过这项研究,我们表明在范德波尔系统中分离时间尺度会导致特征值的进一步分离。扰动慢流形的参数组合更刚性,而仅影响动力学中跳跃的参数组合更松散。