Suppr超能文献

在弱周期扰动下,邦霍夫-范德波尔振荡器中从混沌到振荡死亡的突然转变。

Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation.

作者信息

Sekikawa Munehisa, Shimizu Kuniyasu, Inaba Naohiko, Kita Hiroki, Endo Tetsuro, Fujimoto Ken'ichi, Yoshinaga Tetsuya, Aihara Kazuyuki

机构信息

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056209. doi: 10.1103/PhysRevE.84.056209. Epub 2011 Nov 10.

Abstract

In this paper, we analyze the sudden change from chaos to oscillation death generated by the Bonhoeffer-van der Pol (BVP) oscillator under weak periodic perturbation. The parameter values of the BVP oscillator are chosen such that a stable focus and a stable relaxation oscillation coexist if no perturbation is applied. In such a system, complicated bifurcation structure is expected to emerge when weak periodic perturbation is applied because the stable focus and the stable relaxation oscillation coexist in close proximity in the phase plane. We draw a bifurcation diagram of the fundamental harmonic entrainment. The bifurcation structure is complex because there coexist two bifurcation sets. One is the bifurcation set generated in the vicinity of the stable focus, and the other is that generated in the vicinity of the stable relaxation oscillation. By analyzing the bifurcation diagram in detail, we can explain the sudden change from chaos with complicated waveforms to oscillation death. We make it clear that this phenomenon is caused by a saddle-node bifurcation.

摘要

在本文中,我们分析了在弱周期扰动下,由邦霍夫尔-范德波尔(BVP)振荡器产生的从混沌到振荡死亡的突变。选择BVP振荡器的参数值,使得在不施加扰动时,一个稳定焦点和一个稳定弛豫振荡共存。在这样的系统中,当施加弱周期扰动时,预计会出现复杂的分岔结构,因为稳定焦点和稳定弛豫振荡在相平面中紧邻共存。我们绘制了基波同步的分岔图。分岔结构很复杂,因为存在两个分岔集。一个是在稳定焦点附近产生的分岔集,另一个是在稳定弛豫振荡附近产生的分岔集。通过详细分析分岔图,我们可以解释从具有复杂波形的混沌到振荡死亡的突变。我们明确表明,这种现象是由鞍结分岔引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验