École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
Phys Rev Lett. 2012 Aug 10;109(6):068702. doi: 10.1103/PhysRevLett.109.068702.
How can we localize the source of diffusion in a complex network? Because of the tremendous size of many real networks-such as the internet or the human social graph-it is usually unfeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N(α)), where α=1 for arbitrary trees and α=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.
我们如何定位复杂网络中扩散的源头?由于许多真实网络(如互联网或人类社交图)的规模巨大,通常不可能观察到网络中所有节点的状态。我们表明,从稀疏放置的观测者收集的测量值中,基本上可以估计源的位置。我们提出了一种针对任意树的最优策略,实现了最大的正确定位概率。我们用复杂度 O(N(α))描述了有效的实现方法,其中对于任意树,α=1,对于任意图,α=3。在几个案例研究的背景下,我们确定了各种系统参数(包括网络结构、观测者密度和观测到的级联数量)如何影响定位精度。