Department of Integrative Biology, University of California, 1001 Valley Life Science Building #3140, Berkeley, California 94720-3140, USA.
Mol Ecol. 2012 Oct;21(19):4665-8. doi: 10.1111/j.1365-294X.2012.05719.x.
Intraspecific genetic variation can affect community structure and ecosystem processes (Bolnick et al. 2011). It can also influence phenotypic expression by genotypes within other species to produce genotype-by-genotype (G × G) interaction (Falconer & Mackay 1996). Evolution of one species drives correlated evolution of others when it causes G × G for fitness (Thompson 2005). However, the mechanisms by which species interact also influence evolutionary outcomes (Kummel & Salant 2006; Golubski & Klausmeier 2010; Akçay & Simms 2011; Grman et al. 2012). To identify genes and putative functional mechanisms underlying G × G interactions, Heath et al. (2012) analysed natural variation in the symbiotic transcriptome of the mutualistic nutritional symbiosis between a legume host Medicago truncatula and the facultative endosymbiotic rhizobium Sinorhizobium meliloti. Using twelve microarrays, the authors simultaneously measured host and symbiont gene expression in root nodules from four factorial pairings of host and symbiont genotypes that produced G × G in host fitness (Fig. 1, upper panel). Rhizobium gene expression was influenced by rhizobium and plant genotype and the G × G interaction (Fig. 1, lower panel), whereas plant gene expression was influenced primarily by plant genotype. The authors identified rhizobium genes that might contribute to G × G in host plant fitness. Heath et al. (2012) have moved beyond the constraints of single organism analysis towards a more realistic understanding of plants and bacteria as organisms inextricably linked with symbioses that affect even basic patterns of gene expression.
种内遗传变异会影响群落结构和生态系统过程(Bolnick 等人,2011)。它还可以通过其他物种内的基因型影响表型表达,从而产生基因型间(G×G)相互作用(Falconer 和 Mackay,1996)。当一种物种的进化导致适合度的 G×G 时,它会引起其他物种的相关进化(Thompson,2005)。然而,物种相互作用的机制也会影响进化结果(Kummel 和 Salant,2006;Golubski 和 Klausmeier,2010;Akçay 和 Simms,2011;Grman 等人,2012)。为了确定 G×G 相互作用背后的基因和潜在功能机制,Heath 等人(2012)分析了豆科植物宿主 Medicago truncatula 与兼性内共生根瘤菌 Sinorhizobium meliloti 之间共生转录组的自然变异。作者使用 12 个微阵列,同时测量了来自四个宿主和共生基因型的根瘤中的宿主和共生基因表达,这些基因型在宿主适应性中产生了 G×G(图 1,上半部分)。根瘤菌基因表达受根瘤菌和植物基因型以及 G×G 相互作用的影响(图 1,下半部分),而植物基因表达主要受植物基因型的影响。作者确定了根瘤菌基因,这些基因可能有助于宿主植物适应性中的 G×G。Heath 等人(2012)已经超越了单一生物体分析的限制,朝着更现实地理解植物和细菌作为与共生关系不可分割的生物体迈进,这些共生关系甚至影响了基本的基因表达模式。