Suppr超能文献

疾病状态下的精氨酸从头合成和一氧化氮生成。

Arginine de novo and nitric oxide production in disease states.

机构信息

Center for Translational Research in Aging & Longevity, Dept. of Health & Kinesiology, Texas A&M Univ., College Station, TX 77843, USA.

出版信息

Am J Physiol Endocrinol Metab. 2012 Nov 15;303(10):E1177-89. doi: 10.1152/ajpendo.00284.2012. Epub 2012 Sep 25.

Abstract

Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production. The latter may be linked to the availability of citrulline, which is the immediate precursor of arginine and limiting factor for de novo arginine production. Arginine metabolism is highly compartmentalized due to the expression of the enzymes involved in arginine metabolism in various organs. A small fraction of arginine enters the NO synthase (NOS) pathway. Tetrahydrobiopterin (BH4) is an essential and rate-limiting cofactor for the production of NO. Depletion of BH4 in oxidative-stressed endothelial cells can result in so-called NOS3 "uncoupling," resulting in production of superoxide instead of NO. Moreover, distribution of arginine between intracellular transporters and arginine-converting enzymes, as well as between the arginine-converting and arginine-synthesizing enzymes, determines the metabolic fate of arginine. Alternatively, NO can be derived from conversion of nitrite. Reduced arginine availability stemming from reduced de novo production and elevated arginase activity have been reported in various conditions of acute and chronic stress, which are often characterized by increased NOS2 and reduced NOS3 activity. Cardiovascular and pulmonary disorders such as atherosclerosis, diabetes, hypercholesterolemia, ischemic heart disease, and hypertension are characterized by NOS3 uncoupling. Therapeutic applications to influence (de novo) arginine and NO metabolism aim at increasing substrate availability or at influencing the metabolic fate of specific pathways related to NO bioavailability and prevention of NOS3 uncoupling. These include supplementation of arginine or citrulline, provision of NO donors including inhaled NO and nitrite (sources), NOS3 modulating agents, or the targeting of endogenous NOS inhibitors like asymmetric dimethylarginine.

摘要

精氨酸来源于饮食蛋白质摄入、身体蛋白质分解或内源性从头合成。后者可能与瓜氨酸的可用性有关,瓜氨酸是精氨酸的直接前体,也是从头合成精氨酸的限制因素。由于参与精氨酸代谢的酶在各种器官中的表达,精氨酸代谢具有高度的区室化。一小部分精氨酸进入一氧化氮合酶(NOS)途径。四氢生物蝶呤(BH4)是产生 NO 的必需限速辅助因子。氧化应激内皮细胞中 BH4 的耗竭可导致所谓的 NOS3“解偶联”,导致超氧化物而不是 NO 的产生。此外,精氨酸在细胞内转运蛋白和精氨酸转化酶之间以及精氨酸转化酶和精氨酸合成酶之间的分布决定了精氨酸的代谢命运。或者,NO 可以从亚硝酸盐的转化中产生。在各种急性和慢性应激条件下,已经报道了从头合成减少和精氨酸酶活性升高导致的精氨酸可用性降低,这些条件通常伴有 NOS2 增加和 NOS3 活性降低。心血管和肺部疾病,如动脉粥样硬化、糖尿病、高胆固醇血症、缺血性心脏病和高血压,其特征是 NOS3 解偶联。影响(从头合成)精氨酸和 NO 代谢的治疗应用旨在增加底物可用性或影响与 NO 生物利用度相关的特定途径的代谢命运并预防 NOS3 解偶联。这些包括补充精氨酸或瓜氨酸、提供包括吸入 NO 和亚硝酸盐在内的 NO 供体(来源)、NOS3 调节剂或针对内源性 NOS 抑制剂如不对称二甲基精氨酸。

相似文献

1
Arginine de novo and nitric oxide production in disease states.
Am J Physiol Endocrinol Metab. 2012 Nov 15;303(10):E1177-89. doi: 10.1152/ajpendo.00284.2012. Epub 2012 Sep 25.
2
The role of NOS2 and NOS3 in renal protein and arginine metabolism during early endotoxemia in mice.
Am J Physiol Renal Physiol. 2005 Apr;288(4):F816-22. doi: 10.1152/ajprenal.00308.2004. Epub 2004 Nov 16.
3
Regulation of nitric oxide production in health and disease.
Curr Opin Clin Nutr Metab Care. 2010 Jan;13(1):97-104. doi: 10.1097/MCO.0b013e328332f99d.
4
Arginase-1 deficiency regulates arginine concentrations and NOS2-mediated NO production during endotoxemia.
PLoS One. 2014 Jan 21;9(1):e86135. doi: 10.1371/journal.pone.0086135. eCollection 2014.
5
Regulation of nitric oxide production by arginine metabolic enzymes.
Biochem Biophys Res Commun. 2000 Sep 7;275(3):715-9. doi: 10.1006/bbrc.2000.3169.
7
Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
Pharmacol Ther. 2013 Dec;140(3):239-57. doi: 10.1016/j.pharmthera.2013.07.004. Epub 2013 Jul 13.
8
Reduced arginine availability and nitric oxide production.
Clin Nutr. 2002 Aug;21(4):273-9. doi: 10.1054/clnu.2002.0571.
9
There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine.
Nitric Oxide. 2022 Dec 1;129:16-24. doi: 10.1016/j.niox.2022.09.002. Epub 2022 Sep 17.

引用本文的文献

2
Arginine at the host-pathogen interface.
Infect Immun. 2025 Aug 12;93(8):e0061224. doi: 10.1128/iai.00612-24. Epub 2025 Jul 3.
4
Modeling the kinetics of interorgan arginine metabolism during bacterial sepsis in swine.
Am J Physiol Gastrointest Liver Physiol. 2025 Mar 1;328(3):G309-G310. doi: 10.1152/ajpgi.00375.2024. Epub 2025 Jan 29.
9
Muscle protein catabolism and splanchnic arginine consumption drive arginine dysregulation during induced early acute sepsis in swine.
Am J Physiol Gastrointest Liver Physiol. 2024 Sep 3;327(5):G673-84. doi: 10.1152/ajpgi.00257.2023.
10
Genetic and functional analysis of Raynaud's syndrome implicates loci in vasculature and immunity.
Cell Genom. 2024 Sep 11;4(9):100630. doi: 10.1016/j.xgen.2024.100630. Epub 2024 Aug 13.

本文引用的文献

1
Nitric oxide and L-arginine metabolism in a devascularized porcine model of acute liver failure.
Am J Physiol Gastrointest Liver Physiol. 2012 Aug 1;303(3):G435-41. doi: 10.1152/ajpgi.00268.2011. Epub 2012 Mar 15.
3
Intracellular L-arginine concentration does not determine NO production in endothelial cells: implications on the "L-arginine paradox".
Biochem Biophys Res Commun. 2011 Nov 4;414(4):660-3. doi: 10.1016/j.bbrc.2011.09.112. Epub 2011 Oct 1.
4
Immunohistochemical study of arginase 1 and 2 in various tissues of rats.
Acta Histochem. 2012 Sep;114(5):487-94. doi: 10.1016/j.acthis.2011.09.002. Epub 2011 Oct 4.
5
Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice.
Cardiovasc Res. 2011 Nov 1;92(2):267-75. doi: 10.1093/cvr/cvr233. Epub 2011 Aug 29.
7
To give or not to give? Lessons from the arginine paradox.
J Nutrigenet Nutrigenomics. 2011;4(2):90-8. doi: 10.1159/000327777. Epub 2011 May 28.
9
Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease.
Nitric Oxide. 2011 Aug 1;25(2):81-8. doi: 10.1016/j.niox.2011.04.004. Epub 2011 Apr 22.
10
The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease.
Curr Cardiol Rev. 2010 May;6(2):82-90. doi: 10.2174/157340310791162659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验