Robot Convergence R & D Group, Korea Institute of Industrial Technology (KITECH), 1271-18, Sa-3-dong, Sangrok-gu, Ansan 426791, Korea.
Sensors (Basel). 2012;12(7):8640-62. doi: 10.3390/s120708640. Epub 2012 Jun 26.
This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.
本研究提出了一种使用 Kinect™ 传感器对视觉特征进行空间测量的数学不确定性模型。该模型可为 Kinect™ 传感器作为 3D 感知传感器的应用提供定性和定量分析。为了实现这一目标,我们推导出了视差图像空间和真实笛卡尔空间之间的不确定性传播关系,以及这两个空间之间的映射函数。利用这种传播关系,我们得到了测量误差协方差矩阵的数学模型,它表示了 Kinect™ 传感器视觉特征空间位置的不确定性。为了推导出视觉特征空间不确定性的定量模型,我们使用收集到的视觉特征数据估计了视差图像空间中的协方差矩阵。然后,我们通过将视差图像空间中的协方差矩阵和校准的传感器参数应用于所提出的数学模型,计算了空间不确定性信息。通过比较空间协方差矩阵的不确定性椭球和散射匹配视觉特征的分布,验证了该空间不确定性模型。我们希望这个空间不确定性模型及其分析将在各种 Kinect™ 传感器应用中发挥作用。