Department of Electrical & Computer Engineering, Missouri University of Science and Technology, 301 W. 16th St., Rolla, MO 65409, USA.
Sensors (Basel). 2012;12(7):8955-65. doi: 10.3390/s120708955. Epub 2012 Jun 29.
Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems.
我们利用简单的流体制备结构,展示了基于氧化酶的酶生物传感器的性能提升。我们利用水的电解来产生气泡,以在流道中对生物传感器附近的氧气微环境进行操控。为了使酶反应正常进行,我们开发了一种简单的机械操控气泡的方法,在最大化氧气水平的同时,将电解后的 pH 值变化降到最小。基于酶反应对氧气的依赖性,传感器的灵敏度得到了提高。此外,这种富氧操作还最大限度地减少了传感器运行过程中抗坏血酸的电化学干扰信号比率(即,通过安培检测法检测过氧化氢)。尽管本研究中使用肌酸酐传感器作为模型系统,但该方法适用于许多其他可以使用氧化酶(如葡萄糖、酒精、苯酚等)的生物传感器,以实现在线流体制备传感器系统的可行组件。