Suppr超能文献

实验室筛选的鼠伤寒沙门氏菌突变株中喹诺酮类耐药机制的功能特征。

Functional characterization of quinolone-resistant mechanisms in a lab-selected Salmonella enterica typhimurium mutant.

机构信息

Department of Microbiology, 3201 Hospital, Hanzhong, China.

出版信息

Microb Drug Resist. 2013 Feb;19(1):15-20. doi: 10.1089/mdr.2012.0090. Epub 2012 Sep 26.

Abstract

Correlation has been widely accepted between quinolone resistance and topoisomerase point mutations in quinolone resistance determination regions (QRDRs). Acquirement of point mutations in QRDRs usually increases the microbial resistance to both nalidixic acid and fluoroquinolones. The quinolone-resistant mechanisms accumulated in a lab-selected mutant were characterized through the construction of isogenic mutants using phage λ Red recombinase system and phage P22. The function of a quinolone-resistant mechanism that increased resistance to fluoroquinolones, but decreased resistance to nalidixic acid was fully characterized. A previous reported point mutation in ParC (G78D) was identified in the lab-selected mutant LT2-128. Minimal inhibitory concentrations (MICs) of isogenic mutants showed that acquirement of this point mutation in the host with topoisomerase mutations in GyrA could increase 8- to 32-fold fluoroquinolones MICs, but decrease eight-fold nalidixic acid MICs. Multiple-resistant mechanisms, such as the overexpressed effluxes, were accumulated besides the point mutations in QRDRs in LT2-128 during the mutant selection process. Through biological costs comparison among isogenic mutants, we found the biological cost in LT2-128 was not from the mutations in QRDRs, instead it was from other mutations accumulated during the mutant selection process, such as the mechanisms related to constitutively overexpressed effluxes. Mutation in ParC (G78D) was responsible for the increased resistance to fluoroquinolones, but decreased resistance to nalidixic acid. The existence of this mechanism demonstrated mutations in ParC could play different roles in nalidixic acid and ciprofloxacin resistance.

摘要

喹诺酮类药物耐药性与喹诺酮类药物耐药决定区(QRDR)中的拓扑异构酶点突变之间存在广泛相关性。QRDR 中的点突变通常会增加微生物对萘啶酸和氟喹诺酮类药物的耐药性。通过噬菌体 λ Red 重组酶系统和噬菌体 P22 构建同源突变体,对实验室选择的突变体中积累的喹诺酮类耐药机制进行了特征描述。充分描述了一种增加对氟喹诺酮类药物的耐药性但降低对萘啶酸耐药性的喹诺酮类耐药机制的功能。在实验室选择的突变体 LT2-128 中发现了 ParC(G78D)的先前报道的点突变。同源突变体的最小抑菌浓度(MIC)表明,在具有 GyrA 拓扑异构酶突变的宿主中获得该点突变可以将氟喹诺酮类药物的 MIC 增加 8 至 32 倍,但将萘啶酸的 MIC 降低 8 倍。在 LT2-128 的突变选择过程中,除了 QRDR 中的点突变外,还积累了多种耐药机制,如过度表达的外排泵。通过对同源突变体进行生物成本比较,我们发现 LT2-128 的生物成本不是来自 QRDR 中的突变,而是来自突变选择过程中积累的其他突变,例如与组成型过度表达的外排泵相关的机制。ParC(G78D)中的突变导致对氟喹诺酮类药物的耐药性增加,但对萘啶酸的耐药性降低。该机制的存在表明 ParC 中的突变在萘啶酸和环丙沙星耐药性中可能发挥不同的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验