School of Computer Engineering, Nanyang Technological University, 639798, Singapore.
IEEE Trans Image Process. 2013 Feb;22(2):423-34. doi: 10.1109/TIP.2012.2215620. Epub 2012 Sep 21.
Recent research has shown the initial success of sparse coding (Sc) in solving many computer vision tasks. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR). Essentially, KSR is a sparse coding technique in a high dimensional feature space mapped by an implicit mapping function. We apply KSR to feature coding in image classification, face recognition, and kernel matrix approximation. More specifically, by incorporating KSR into spatial pyramid matching (SPM), we develop KSRSPM, which achieves a good performance for image classification. Moreover, KSR-based feature coding can be shown as a generalization of efficient match kernel and an extension of Sc-based SPM. We further show that our proposed KSR using a histogram intersection kernel (HIK) can be considered a soft assignment extension of HIK-based feature quantization in the feature coding process. Besides feature coding, comparing with sparse coding, KSR can learn more discriminative sparse codes and achieve higher accuracy for face recognition. Moreover, KSR can also be applied to kernel matrix approximation in large scale learning tasks, and it demonstrates its robustness to kernel matrix approximation, especially when a small fraction of the data is used. Extensive experimental results demonstrate promising results of KSR in image classification, face recognition, and kernel matrix approximation. All these applications prove the effectiveness of KSR in computer vision and machine learning tasks.
最近的研究表明稀疏编码(Sc)在解决许多计算机视觉任务方面取得了初步成功。受到核技巧可以捕获特征的非线性相似性这一事实的启发,我们提出了核稀疏表示(KSR)。本质上,KSR 是一种在由隐式映射函数映射的高维特征空间中进行稀疏编码的技术。我们将 KSR 应用于图像分类、人脸识别和核矩阵逼近中的特征编码。更具体地说,通过将 KSR 纳入空间金字塔匹配(SPM)中,我们开发了 KSRSPM,它在图像分类方面取得了良好的性能。此外,基于 KSR 的特征编码可以看作是有效匹配核的推广以及基于 Sc 的 SPM 的扩展。我们进一步表明,我们提出的使用直方图交核(HIK)的 KSR 可以被视为基于 HIK 的特征量化在特征编码过程中的软分配扩展。除了特征编码,与稀疏编码相比,KSR 可以学习更具鉴别力的稀疏码,并在人脸识别方面实现更高的准确性。此外,KSR 还可以应用于大规模学习任务中的核矩阵逼近,并且它在核矩阵逼近方面表现出稳健性,尤其是当仅使用一小部分数据时。广泛的实验结果证明了 KSR 在图像分类、人脸识别和核矩阵逼近方面的有前途的结果。所有这些应用都证明了 KSR 在计算机视觉和机器学习任务中的有效性。