IEEE Trans Image Process. 2015 Nov;24(11):3729-41. doi: 10.1109/TIP.2015.2451953. Epub 2015 Jul 1.
The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data space, and thus are not directly applicable to the Riemannian manifold. In this paper, we propose a novel sparse representation method of SPD matrices in the data-dependent manifold kernel space. The graph Laplacian is incorporated into the kernel space to better reflect the underlying geometry of SPD matrices. Under the proposed framework, we design two different positive definite kernel functions that can be readily transformed to the corresponding manifold kernels. The sparse representation obtained has more discriminating power. Extensive experimental results demonstrate good performance of manifold kernel sparse codes in image classification, face recognition, and visual tracking.
对称正定(SPD)矩阵作为一个连通的黎曼流形,在编码图像信息方面变得越来越流行。大多数现有的稀疏模型主要还是在欧几里得空间中发展起来的。它们没有考虑到数据空间的非线性几何结构,因此不能直接应用于黎曼流形。在本文中,我们提出了一种新的 SPD 矩阵在数据相关流形核空间中的稀疏表示方法。图拉普拉斯被纳入核空间,以更好地反映 SPD 矩阵的底层几何结构。在所提出的框架下,我们设计了两种不同的正定核函数,可以很容易地转化为相应的流形核。得到的稀疏表示具有更强的判别能力。大量的实验结果表明,流形核稀疏码在图像分类、人脸识别和视觉跟踪方面具有良好的性能。