Suppr超能文献

将半径信息有效整合到多核学习中的方法。

An Efficient Approach to Integrating Radius Information into Multiple Kernel Learning.

出版信息

IEEE Trans Cybern. 2013 Apr;43(2):557-69. doi: 10.1109/TSMCB.2012.2212243. Epub 2013 Mar 7.

Abstract

Integrating radius information has been demonstrated by recent work on multiple kernel learning (MKL) as a promising way to improve kernel learning performance. Directly integrating the radius of the minimum enclosing ball (MEB) into MKL as it is, however, not only incurs significant computational overhead but also possibly adversely affects the kernel learning performance due to the notorious sensitivity of this radius to outliers. Inspired by the relationship between the radius of the MEB and the trace of total data scattering matrix, this paper proposes to incorporate the latter into MKL to improve the situation. In particular, in order to well justify the incorporation of radius information, we strictly comply with the radius-margin bound of support vector machines (SVMs) and thus focus on the l2-norm soft-margin SVM classifier. Detailed theoretical analysis is conducted to show how the proposed approach effectively preserves the merits of incorporating the radius of the MEB and how the resulting optimization is efficiently solved. Moreover, the proposed approach achieves the following advantages over its counterparts: 1) more robust in the presence of outliers or noisy training samples; 2) more computationally efficient by avoiding the quadratic optimization for computing the radius at each iteration; and 3) readily solvable by the existing off-the-shelf MKL packages. Comprehensive experiments are conducted on University of California, Irvine, protein subcellular localization, and Caltech-101 data sets, and the results well demonstrate the effectiveness and efficiency of our approach.

摘要

最近的多核学习(MKL)研究表明,整合半径信息是一种提高核学习性能的很有前途的方法。然而,直接将最小包容球(MEB)的半径整合到 MKL 中,不仅会带来巨大的计算开销,而且由于该半径对异常值的敏感性,还可能对核学习性能产生不利影响。受 MEB 半径与总数据散射矩阵迹之间关系的启发,本文提出将后者纳入 MKL 以改善这种情况。特别是,为了充分证明纳入半径信息的合理性,我们严格遵循支持向量机(SVM)的半径-边界约束,因此专注于 l2-范数软间隔 SVM 分类器。进行了详细的理论分析,以展示所提出的方法如何有效地保留纳入 MEB 半径的优点,以及如何有效地解决由此产生的优化问题。此外,与同类方法相比,所提出的方法具有以下优势:1)在存在异常值或噪声训练样本时更稳健;2)通过避免在每次迭代中计算半径的二次优化,更具计算效率;3)通过现有的现成的多核学习包即可解决。在加州大学欧文分校、蛋白质亚细胞定位和加州理工学院 101 数据集上进行了全面的实验,结果很好地证明了我们方法的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验