Suppr超能文献

发现强效白细胞介素 2 诱导的 T 细胞激酶抑制剂:基于结构的虚拟筛选和分子动力学模拟方法。

Discovery of potent inhibitors for interleukin-2-inducible T-cell kinase: structure-based virtual screening and molecular dynamics simulation approaches.

机构信息

Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, 660-701, Republic of Korea.

出版信息

J Mol Model. 2013 Feb;19(2):715-26. doi: 10.1007/s00894-012-1536-7. Epub 2012 Sep 27.

Abstract

In our study, a structure-based virtual screening study was conducted to identify potent ITK inhibitors, as ITK is considered to play an important role in the treatment of inflammatory diseases. We developed a structure-based pharmacophore model using the crystal structure (PDB ID: 3MJ2) of ITK complexed with BMS-50944. The most predictive model, SB-Hypo1, consisted of six features: three hydrogen-bond acceptors (HBA), one hydrogen-bond donor (HBD), one ring aromatic (RA), and one hydrophobic (HY). The statistical significance of SB-Hypo1 was validated using wide range of test set molecules and a decoy set. The resulting well-validated model could then be confidently used as a 3D query to screen for drug-like molecules in a database, in order to retrieve new chemical scaffolds that may be potent ITK inhibitors. The hits retrieved from this search were filtered based on the maximum fit value, drug-likeness, and ADMET properties, and the hits that were retained were used in a molecular docking study to find the binding mode and molecular interactions with crucial residues at the active site of the protein. These hits were then fed into a molecular dynamics simulation to study the flexibility of the activation loop of ITK upon ligand binding. This combination of methodologies is a valuable tool for identifying structurally diverse molecules with desired biological activities, and for designing new classes of selective ITK inhibitors.

摘要

在我们的研究中,进行了一项基于结构的虚拟筛选研究,以鉴定有效的 ITK 抑制剂,因为 ITK 被认为在治疗炎症性疾病方面发挥着重要作用。我们使用 ITK 与 BMS-50944 复合物的晶体结构(PDB ID:3MJ2)开发了一种基于结构的药效团模型。最具预测性的模型 SB-Hypo1 由六个特征组成:三个氢键受体(HBA)、一个氢键供体(HBD)、一个环芳基(RA)和一个疏水基(HY)。使用广泛的测试集分子和诱饵集验证了 SB-Hypo1 的统计显着性。然后,可以自信地将经过良好验证的模型用作 3D 查询,以在数据库中筛选出类似药物的分子,从而检索可能是有效 ITK 抑制剂的新化学支架。从该搜索中检索到的命中物根据最大拟合值、药物相似性和 ADMET 特性进行过滤,保留的命中物用于分子对接研究,以找到与蛋白质活性位点关键残基的结合模式和分子相互作用。然后将这些命中物输入分子动力学模拟中,以研究配体结合时 ITK 的激活环的灵活性。这种组合方法是一种识别具有所需生物学活性的结构多样的分子和设计新类别的选择性 ITK 抑制剂的有价值的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验