Suppr超能文献

果蝇上皮极化过程中通过调控运输和弥散使基底外侧 Bazooka/PAR-3 发生位置位移。

Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in Drosophila.

机构信息

Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.

出版信息

Mol Biol Cell. 2012 Nov;23(22):4465-71. doi: 10.1091/mbc.E12-09-0655. Epub 2012 Sep 26.

Abstract

Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form during cellularization, basally localized Bazooka undergoes basal-to-apical transport. Bazooka requires its three postsynaptic density 95, discs large, zonula occludens-1 (PDZ) domains to engage the transport mechanism, but with the PDZ domains deleted, basolateral displacement still occurs by gastrulation. Basolateral PAR-1 activity appears to act redundantly with the transport mechanism. Knockdown of PAR-1 sporadically destabilizes cellularization furrows, but basolateral displacement of Bazooka still occurs by gastrulation. In contrast, basolateral Bazooka displacement is blocked with disruption of both the transport mechanism and phosphorylation by PAR-1. Thus Bazooka is polarized through a combination of transport and PAR-1-induced dispersion from basolateral membranes. Our work complements recent findings in Caenorhabditis elegans and thus suggests the coupling of transport and dispersion is a common protein polarization strategy.

摘要

极性地标指导上皮细胞的发育。在早期果蝇外胚层中,支架蛋白 Bazooka(果蝇 PAR-3)形成顶端侧地标,以指导黏着连接组装。然而,Bazooka 如何极化尚不清楚。我们报告了两种协同作用的机制,将 Bazooka 从基底外侧膜上置换下来。在细胞化过程中,基底定位的 Bazooka 经历基底到顶端的运输。Bazooka 需要其三个突触后密度 95、Discs 大、Zonula occludens-1(PDZ)结构域来参与运输机制,但 PDZ 结构域缺失后,通过原肠胚形成仍会发生基底外侧置换。基底外侧 PAR-1 活性似乎与运输机制冗余。PAR-1 的敲低偶尔会破坏细胞化皱襞,但通过原肠胚形成仍会发生基底外侧 Bazooka 的置换。相比之下,破坏运输机制和 PAR-1 磷酸化都会阻止 Bazooka 的基底外侧置换。因此,Bazooka 通过运输和 PAR-1 诱导的从基底外侧膜上的分散的组合而极化。我们的工作补充了最近在秀丽隐杆线虫中的发现,因此表明运输和分散的偶联是一种常见的蛋白质极化策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c31/3496619/d4a53e40515e/4465fig1.jpg

相似文献

1
Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in Drosophila.
Mol Biol Cell. 2012 Nov;23(22):4465-71. doi: 10.1091/mbc.E12-09-0655. Epub 2012 Sep 26.
3
A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion.
Curr Biol. 2015 Oct 19;25(20):2701-8. doi: 10.1016/j.cub.2015.08.063. Epub 2015 Oct 8.
6
Rap1 and Canoe/afadin are essential for establishment of apical-basal polarity in the Drosophila embryo.
Mol Biol Cell. 2013 Apr;24(7):945-63. doi: 10.1091/mbc.E12-10-0736. Epub 2013 Jan 30.
7
Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia.
J Cell Biol. 2010 Sep 6;190(5):751-60. doi: 10.1083/jcb.201006029.
8
Par-1 and PP2A: Yin-Yang of Bazooka localization.
Fly (Austin). 2007 Jul-Aug;1(4):235-7. doi: 10.4161/fly.4954. Epub 2007 Jul 3.
10
Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions.
J Cell Biol. 2009 Jun 1;185(5):787-96. doi: 10.1083/jcb.200812146. Epub 2009 May 25.

引用本文的文献

1
Identification of ceRNA networks in type H and L vascular endothelial cells through integrated bioinformatics methods.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Apr 28;49(4):562-577. doi: 10.11817/j.issn.1672-7347.2024.230343.
2
Origin and development of primary animal epithelia.
Bioessays. 2024 Feb;46(2):e2300150. doi: 10.1002/bies.202300150. Epub 2023 Nov 27.
3
Apical-basal polarity and the control of epithelial form and function.
Nat Rev Mol Cell Biol. 2022 Aug;23(8):559-577. doi: 10.1038/s41580-022-00465-y. Epub 2022 Apr 19.
4
Par-1 controls the composition and growth of cortical actin caps during embryo cleavage.
J Cell Biol. 2019 Dec 2;218(12):4195-4214. doi: 10.1083/jcb.201903152. Epub 2019 Oct 22.
7
PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration.
Front Cell Neurosci. 2018 Mar 29;12:90. doi: 10.3389/fncel.2018.00090. eCollection 2018.
9
Protein clustering for cell polarity: Par-3 as a paradigm.
F1000Res. 2017 Aug 31;6:1620. doi: 10.12688/f1000research.11976.1. eCollection 2017.
10
A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.
Dev Cell. 2017 Aug 21;42(4):416-434.e11. doi: 10.1016/j.devcel.2017.07.024.

本文引用的文献

1
The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold.
Mol Cell. 2012 Aug 10;47(3):469-83. doi: 10.1016/j.molcel.2012.06.037.
3
Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration.
Curr Biol. 2012 Mar 6;22(5):363-72. doi: 10.1016/j.cub.2012.01.037. Epub 2012 Feb 9.
4
Assembly of Bazooka polarity landmarks through a multifaceted membrane-association mechanism.
J Cell Sci. 2012 Mar 1;125(Pt 5):1177-90. doi: 10.1242/jcs.091884. Epub 2012 Feb 2.
6
Novel insights into epithelial polarity proteins in Drosophila.
Trends Cell Biol. 2011 Jul;21(7):401-8. doi: 10.1016/j.tcb.2011.03.005. Epub 2011 Apr 27.
7
Cell polarity in eggs and epithelia: parallels and diversity.
Cell. 2010 May 28;141(5):757-74. doi: 10.1016/j.cell.2010.05.011.
8
How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila.
Curr Top Dev Biol. 2009;89:55-85. doi: 10.1016/S0070-2153(09)89003-0.
9
Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration.
Curr Biol. 2009 Jul 14;19(13):1065-74. doi: 10.1016/j.cub.2009.05.065. Epub 2009 Jun 18.
10
Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions.
J Cell Biol. 2009 Jun 1;185(5):787-96. doi: 10.1083/jcb.200812146. Epub 2009 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验