Suppr超能文献

发育中的库氏髭蟾(Eleutherodactylus coqui)附肢的分子解剖结构。

Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Evol Dev. 2011 Sep-Oct;13(5):415-26. doi: 10.1111/j.1525-142X.2011.00500.x.

Abstract

The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules appears to be absolutely essential in all other model systems so far examined. Although this analysis substantiates the existence of a core set of ancient limb-patterning molecules, which likely mediate identical functions across highly diverse vertebrate forms, it also reveals remarkable evolutionary flexibility in the genetic control of a conserved morphological pattern across evolutionary time.

摘要

脊椎动物的肢体在系统发育上表现出显著的相似性,跨越了不同的群体。为了更深入地了解这种形态相似性是如何在不同的发育环境中保持的,我们探索了波多黎各 coquí 青蛙 Eleutherodactylus coqui 体型缩小胚胎的分子解剖结构。这种动物表现出直接发育,这是一种生活史策略,其特点是从卵到成年的快速发育,没有自由生活的水生幼虫。尽管如此,coquí 表现出基本的有尾两栖动物肢体结构,前肢有四个脚趾,后肢有五个脚趾。我们研究了 coquí 肢体芽发育在多大程度上符合从羊膜动物研究中得出的肢体发育模型。为此,我们在肢体发育的三个主要阶段,对 13 个关键模式形成基因的动态表达模式进行了特征描述。正如预期的那样,大多数基因的表达模式与羊膜动物物种基本相同。例如,我们在顶端外胚层嵴 (AER) 内鉴定到 EcFgf8 的表达域。尽管 coquí 胚胎中没有形态嵴,但这种表达模式定义了一个可能具有功能的 AER 信号域。然而,两个基因 EcMeis2 和 EcAlx4 的表达域发生了改变,这意味着在 coquí 青蛙和羊膜动物模型系统之间,基因功能可能发生了潜在的转变。出乎意料的是,在其他系统中被认为对肢体模式形成至关重要的几个基因,包括 EcFgf4、EcWnt3a、EcWnt7a 和 EcGremlin,在我们分析的三个阶段中,在肢体上没有明显的表达模式。考虑到在基于基因敲除和表达分析的情况下,该基因对于小鼠的正常肢体发育并非关键,因此在肢体模式形成过程中缺乏 EcFgf4 和 EcWnt3a 的表达可能并不奇怪。相比之下,缺乏 EcWnt7a 和 EcGremlin 的表达令人惊讶,因为迄今为止在所有其他模型系统中,这些分子的表达似乎是绝对必要的。尽管这种分析证实了存在一组核心的古老肢体模式形成分子,这些分子可能在高度多样化的脊椎动物形式中介导相同的功能,但它也揭示了在跨越进化时间的保守形态模式的遗传控制中存在显著的进化灵活性。

相似文献

1
Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.
Evol Dev. 2011 Sep-Oct;13(5):415-26. doi: 10.1111/j.1525-142X.2011.00500.x.
3
Opercular development and ontogenetic re-organization in a direct-developing frog.
Dev Genes Evol. 2000 Jul;210(7):377-81. doi: 10.1007/s004270000070.
4
Limb development and evolution: a frog embryo with no apical ectodermal ridge (AER).
J Anat. 1998 Apr;192 ( Pt 3)(Pt 3):379-90. doi: 10.1046/j.1469-7580.1998.19230379.x.
6
Evolutionary Conservation of Thyroid Hormone Receptor and Deiodinase Expression Dynamics in a Direct-Developing Frog, .
Front Endocrinol (Lausanne). 2019 May 24;10:307. doi: 10.3389/fendo.2019.00307. eCollection 2019.
7
Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression.
Evol Dev. 2010 Jul-Aug;12(4):373-82. doi: 10.1111/j.1525-142X.2010.00424.x.
8
Leg development in a frog without a tadpole (Eleutherodactylus coqui).
J Exp Zool. 1994 Oct 1;270(2):202-10. doi: 10.1002/jez.1402700209.
9
Apical ectodermal ridge regulates three principal axes of the developing limb.
J Zhejiang Univ Sci B. 2020;21(10):757-766. doi: 10.1631/jzus.B2000285.

引用本文的文献

1
Air-breathing behavior underlies the cell death in limbs of Rana pirica tadpoles.
Zoological Lett. 2023 Jan 9;9(1):2. doi: 10.1186/s40851-022-00199-x.
2
is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders.
Front Cell Dev Biol. 2022 Apr 1;10:797352. doi: 10.3389/fcell.2022.797352. eCollection 2022.
3
The big potential of the small frog .
Elife. 2022 Jan 14;11:e73401. doi: 10.7554/eLife.73401.
4
Limb positioning and initiation: An evolutionary context of pattern and formation.
Dev Dyn. 2021 Sep;250(9):1264-1279. doi: 10.1002/dvdy.308. Epub 2021 Feb 15.
6
Fin-fold development in paddlefish and catshark and implications for the evolution of the autopod.
Proc Biol Sci. 2017 May 31;284(1855). doi: 10.1098/rspb.2016.2780.
7
Saunders's framework for understanding limb development as a platform for investigating limb evolution.
Dev Biol. 2017 Sep 15;429(2):401-408. doi: 10.1016/j.ydbio.2016.11.005. Epub 2016 Nov 11.
8
Expression of a cardiac myosin gene in non-heart tissues of developing frogs.
Dev Genes Evol. 2013 May;223(3):189-93. doi: 10.1007/s00427-012-0421-9. Epub 2012 Oct 18.

本文引用的文献

1
Lbx1 expression and frog limb development.
Dev Genes Evol. 2009 Dec;219(11-12):609-12. doi: 10.1007/s00427-009-0314-8. Epub 2010 Jan 21.
2
FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds.
Dev Cell. 2009 Apr;16(4):607-13. doi: 10.1016/j.devcel.2009.02.008.
3
A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning.
Science. 2009 Feb 20;323(5917):1050-3. doi: 10.1126/science.1168755.
6
An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.
Nature. 2008 Jul 31;454(7204):638-41. doi: 10.1038/nature07085. Epub 2008 Jun 25.
7
Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.
Nature. 2008 May 15;453(7193):401-5. doi: 10.1038/nature06876. Epub 2008 Apr 30.
8
Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4185-90. doi: 10.1073/pnas.0707899105. Epub 2008 Mar 11.
10
Regulation of Gremlin expression in the posterior limb bud.
Dev Biol. 2006 Nov 1;299(1):12-21. doi: 10.1016/j.ydbio.2006.05.026. Epub 2006 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验