Suppr超能文献

肢体定位与启动:模式与形成的进化背景。

Limb positioning and initiation: An evolutionary context of pattern and formation.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Dev Dyn. 2021 Sep;250(9):1264-1279. doi: 10.1002/dvdy.308. Epub 2021 Feb 15.

Abstract

Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.

摘要

在肢体或鳍出现之前,它们必须先被启动。肢体的启动首先涉及到指定沿体侧的侧板中胚层的一部分作为未来肢体的位置。在指定之后,无数的细胞和分子事件相互作用,产生一个将生长并形成肢体的芽。在过去的三十年中,人们对这些事件如何产生肢体芽以及它们的变化如何导致不同的肢体形式有了丰富的了解。相比之下,人们对肢体形成的最早步骤以及改变肢体的位置和启动对进化的影响关注较少。在这里,我们首先回顾了从羊膜动物模型系统中确定的这两个肢体启动阶段所涉及的过程和途径。然后,我们扩大范围,研究肢体启动模块的变化如何为羊膜动物的生物多样性做出贡献。最后,我们回顾了鱼类和两栖类动物肢体启动的相关知识,并考虑了哪些机制在脊椎动物中是保守的。

相似文献

1
Limb positioning and initiation: An evolutionary context of pattern and formation.
Dev Dyn. 2021 Sep;250(9):1264-1279. doi: 10.1002/dvdy.308. Epub 2021 Feb 15.
2
Molecular and evolutionary basis of limb field specification and limb initiation.
Dev Growth Differ. 2013 Jan;55(1):149-63. doi: 10.1111/dgd.12017. Epub 2012 Dec 6.
3
Limbs: a model for pattern formation within the vertebrate body plan.
Trends Genet. 1996 Jul;12(7):253-7. doi: 10.1016/0168-9525(96)10030-5.
5
Evidence that mechanisms of fin development evolved in the midline of early vertebrates.
Nature. 2006 Aug 31;442(7106):1033-7. doi: 10.1038/nature04984. Epub 2006 Jul 26.
6
Developmental hourglass and heterochronic shifts in fin and limb development.
Elife. 2021 Feb 9;10:e62865. doi: 10.7554/eLife.62865.
7
How the embryo makes a limb: determination, polarity and identity.
J Anat. 2015 Oct;227(4):418-30. doi: 10.1111/joa.12361. Epub 2015 Aug 7.
8
Time-sequenced transcriptomes of developing distal mouse limb buds: A comparative tissue layer analysis.
Dev Dyn. 2022 Sep;251(9):1550-1575. doi: 10.1002/dvdy.394. Epub 2021 Jul 17.
9
Regulation of vertebrate forelimb development and wing reduction in the flightless emu.
Dev Dyn. 2021 Sep;250(9):1248-1263. doi: 10.1002/dvdy.288. Epub 2021 Jan 11.
10
Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis.
Dev Dyn. 2022 Nov;251(11):1880-1896. doi: 10.1002/dvdy.517. Epub 2022 Jul 20.

引用本文的文献

1
Adaptive evolution of as a potential mechanism for flipper forelimb changes in cetaceans.
Zool Res. 2025 May 18;46(3):675-683. doi: 10.24272/j.issn.2095-8137.2024.473.
2
Thalidomide-induced limb malformations: an update and reevaluation.
Arch Toxicol. 2025 May;99(5):1643-1747. doi: 10.1007/s00204-024-03930-z. Epub 2025 Apr 8.
5
MSX1PDGFRA limb mesenchyme-like cells as an efficient stem cell source for human cartilage regeneration.
Stem Cell Reports. 2024 Mar 12;19(3):399-413. doi: 10.1016/j.stemcr.2024.02.001. Epub 2024 Feb 29.
6
Sall genes regulate hindlimb initiation in mouse embryos.
Genetics. 2024 May 7;227(1). doi: 10.1093/genetics/iyae029.
9
Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail.
Cells Dev. 2023 Dec;176:203866. doi: 10.1016/j.cdev.2023.203866. Epub 2023 Jun 30.
10
Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates.
Sci China Life Sci. 2023 Oct;66(10):2399-2414. doi: 10.1007/s11427-023-2362-5. Epub 2023 May 22.

本文引用的文献

1
Development of a non-amphibious amphibian - an interview with a coquí.
Int J Dev Biol. 2021;65(1-2-3):171-176. doi: 10.1387/ijdb.190386re.
2
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis.
Curr Top Dev Biol. 2020;139:61-88. doi: 10.1016/bs.ctdb.2020.02.005. Epub 2020 Mar 9.
3
Attenuated Fgf Signaling Underlies the Forelimb Heterochrony in the Emu Dromaius novaehollandiae.
Curr Biol. 2019 Nov 4;29(21):3681-3691.e5. doi: 10.1016/j.cub.2019.09.014. Epub 2019 Oct 24.
4
Convergent regulatory evolution and loss of flight in paleognathous birds.
Science. 2019 Apr 5;364(6435):74-78. doi: 10.1126/science.aat7244.
5
Cux2 refines the forelimb field by controlling expression of and genes.
Biol Open. 2019 Feb 1;8(2):bio040584. doi: 10.1242/bio.040584.
6
Timed Collinear Activation of Hox Genes during Gastrulation Controls the Avian Forelimb Position.
Curr Biol. 2019 Jan 7;29(1):35-50.e4. doi: 10.1016/j.cub.2018.11.009. Epub 2018 Dec 13.
7
Genomic Knockout of Two Presumed Forelimb Tbx5 Enhancers Reveals They Are Nonessential for Limb Development.
Cell Rep. 2018 Jun 12;23(11):3146-3151. doi: 10.1016/j.celrep.2018.05.052.
9
Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes.
Genesis. 2018 Jan;56(1). doi: 10.1002/dvg.23077. Epub 2017 Nov 2.
10
Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods.
Nat Ecol Evol. 2017 Sep;1(9):1392-1399. doi: 10.1038/s41559-017-0247-y. Epub 2017 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验