Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan.
Evol Dev. 2012 Jan-Feb;14(1):56-75. doi: 10.1111/j.1525-142X.2011.00522.x.
More than 550 million years ago, chordates originated from a common ancestor shared with nonchordate deuterostomes by developing a novel type of larva, the "tadpole larva." The notochord is the supporting organ of the larval tail and the most prominent feature of chordates; indeed, phylum Chordata is named after this organ. In this review, we discuss the molecular mechanisms involved in the formation of the notochord over the course of chordate evolution with a special emphasis on a member of T-box gene family, Brachyury. Comparison of the decoded genome of a unicellular choanoflagellate with the genomes of sponge and cnidarians suggests that T-box gene family arose at the time of the evolution of multicellular animals. Gastrulation is a morphogenetic movement that is essential for the formation of two- or three-germ-layered embryos. Brachyury is transiently expressed in the blastopore (bp) region, where it confers on cells the ability to undergo invagination. This process is involved in the formation of the archenteron in all metazoans. This is a "primary" function of Brachyury. During the evolution of chordates, Brachyury gained an additional expression domain at the dorsal midline region of the bp. In this new expression domain, Brachyury served its "secondary" function, recruiting another set of target genes to form a dorsal axial organ, notochord. The Wnt/β-catenin, BMP/Nodal, and FGF-signaling pathways are involved in the transcriptional activation of Brachyury. We discuss the molecular mechanisms of Brachyury secondary function in the context of the dorsal-ventral (D-V) inversion theory and the aboral-dorsalization hypothesis. Although the scope of this review requires some degree of oversimplification of Brachyury function, it is beneficial to facilitate studies on the notochord formation, a central evolutionary developmental biology problem in the history of metazoan evolution, pointed out first by Alexander Kowalevsky.
5.5 亿多年前,脊索动物通过发育一种新型幼虫“尾芽幼虫”,从与非脊索动物后口动物共享的共同祖先中起源。脊索是幼虫尾巴的支撑器官,也是脊索动物最显著的特征;事实上,脊索动物门就是以这个器官命名的。在这篇综述中,我们讨论了在脊索动物进化过程中脊索形成的分子机制,特别强调了 T 盒基因家族的一个成员——Brachyury。与海绵和刺胞动物的已解码基因组进行比较表明,T 盒基因家族是在多细胞动物进化时出现的。原肠胚形成是一种形态发生运动,对于形成具有两个或三个胚层的胚胎至关重要。Brachyury 在胚孔 (bp) 区域短暂表达,赋予细胞内陷的能力。这个过程涉及所有后生动物的原肠胚形成。这是 Brachyury 的“初级”功能。在脊索动物的进化过程中,Brachyury 在 bp 的背中线区域获得了另一个表达域。在这个新的表达域中,Brachyury 发挥了其“次要”功能,招募了另一组靶基因形成背轴器官脊索。Wnt/β-catenin、BMP/Nodal 和 FGF 信号通路参与了 Brachyury 的转录激活。我们讨论了 Brachyury 次要功能的分子机制,包括背腹 (D-V) 反转理论和背面化假说。尽管本综述的范围要求对 Brachyury 功能进行一定程度的简化,但它有利于促进对脊索形成的研究,这是后生动物进化历史中一个中心的进化发育生物学问题,首先由亚历山大·科瓦列夫斯基提出。