Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.
J Biol Chem. 2012 Nov 9;287(46):38946-55. doi: 10.1074/jbc.M112.380121. Epub 2012 Sep 27.
The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection.
树突状细胞(DCs)表面表达的 C 型凝集素 DC-SIGN 有助于捕获和内化多种不同的病原体。尽管已知 DC-SIGN 在 DC 表面形成纳米簇,但负责这种明确定义的纳米图案形成和病毒结合的分子机制仍然是个谜。通过结合生化和先进的生物物理技术,包括光学超分辨率和单粒子跟踪,我们证明了 DC-SIGN 的固有纳米簇化严格依赖于其分子结构。DC-SIGN 纳米簇在细胞膜上自由布朗扩散。已知会破坏四聚化的细胞外颈区的截断显著降低了纳米簇化,并伴随侧向扩散增加。重要的是,DC-SIGN 纳米簇的溶解仅损害了与纳米级大小病原体的结合。蒙特卡罗模拟表明,纳米簇密度和空间分布的异质性赋予了 DC-SIGN 更广泛的结合能力。因此,我们的结果强调了由颈区之间的分子间相互作用驱动的空间纳米图案化与受体扩散之间的直接关系,为 DC-SIGN 提供了在病毒长度尺度上对接病原体的精湛能力。深入了解病毒受体在病毒结合之前是如何组织的,以及它们如何组装成用于病毒对接的功能平台,有助于开发预防病毒进入和感染的新策略。