Suppr超能文献

C 型凝集素 DC-SIGN 的颈部区域调节其在抗原呈递细胞表面的时空组织和病毒结合能力。

The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen-presenting cells.

机构信息

Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.

出版信息

J Biol Chem. 2012 Nov 9;287(46):38946-55. doi: 10.1074/jbc.M112.380121. Epub 2012 Sep 27.

Abstract

The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection.

摘要

树突状细胞(DCs)表面表达的 C 型凝集素 DC-SIGN 有助于捕获和内化多种不同的病原体。尽管已知 DC-SIGN 在 DC 表面形成纳米簇,但负责这种明确定义的纳米图案形成和病毒结合的分子机制仍然是个谜。通过结合生化和先进的生物物理技术,包括光学超分辨率和单粒子跟踪,我们证明了 DC-SIGN 的固有纳米簇化严格依赖于其分子结构。DC-SIGN 纳米簇在细胞膜上自由布朗扩散。已知会破坏四聚化的细胞外颈区的截断显著降低了纳米簇化,并伴随侧向扩散增加。重要的是,DC-SIGN 纳米簇的溶解仅损害了与纳米级大小病原体的结合。蒙特卡罗模拟表明,纳米簇密度和空间分布的异质性赋予了 DC-SIGN 更广泛的结合能力。因此,我们的结果强调了由颈区之间的分子间相互作用驱动的空间纳米图案化与受体扩散之间的直接关系,为 DC-SIGN 提供了在病毒长度尺度上对接病原体的精湛能力。深入了解病毒受体在病毒结合之前是如何组织的,以及它们如何组装成用于病毒对接的功能平台,有助于开发预防病毒进入和感染的新策略。

相似文献

3
Beyond attachment: Roles of DC-SIGN in dengue virus infection.
Traffic. 2017 Apr;18(4):218-231. doi: 10.1111/tra.12469. Epub 2017 Feb 28.
4
Distribution and lateral mobility of DC-SIGN on immature dendritic cells--implications for pathogen uptake.
J Cell Sci. 2008 Mar 1;121(Pt 5):634-43. doi: 10.1242/jcs.022418. Epub 2008 Feb 12.
5
Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells.
J Cell Biol. 2004 Jan 5;164(1):145-55. doi: 10.1083/jcb.200306112.
6
Enhanced receptor-clathrin interactions induced by N-glycan-mediated membrane micropatterning.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11037-42. doi: 10.1073/pnas.1402041111. Epub 2014 Jul 16.
7
Measles virus targets DC-SIGN to enhance dendritic cell infection.
J Virol. 2006 Apr;80(7):3477-86. doi: 10.1128/JVI.80.7.3477-3486.2006.
9
DCIR interacts with ligands from both endogenous and pathogenic origin.
Immunol Lett. 2014 Mar-Apr;158(1-2):33-41. doi: 10.1016/j.imlet.2013.11.007. Epub 2013 Nov 14.
10
Rapid, directed transport of DC-SIGN clusters in the plasma membrane.
Sci Adv. 2017 Nov 8;3(11):eaao1616. doi: 10.1126/sciadv.aao1616. eCollection 2017 Nov.

引用本文的文献

1
The ubiquitous nanocluster: A molecular scale organizing principle that governs cellular information flow.
Curr Opin Cell Biol. 2024 Feb;86:102285. doi: 10.1016/j.ceb.2023.102285. Epub 2023 Dec 6.
2
Inferring pointwise diffusion properties of single trajectories with deep learning.
Biophys J. 2023 Nov 21;122(22):4360-4369. doi: 10.1016/j.bpj.2023.10.015. Epub 2023 Oct 17.
3
Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion.
EMBO Rep. 2023 Nov 6;24(11):e57842. doi: 10.15252/embr.202357842. Epub 2023 Sep 28.
5
From structure to function - Ligand recognition by myeloid C-type lectin receptors.
Comput Struct Biotechnol J. 2022 Oct 20;20:5790-5812. doi: 10.1016/j.csbj.2022.10.019. eCollection 2022.
6
Dectin-1-Mediated DC-SIGN Recruitment to Contact Sites.
Life (Basel). 2021 Jan 31;11(2):108. doi: 10.3390/life11020108.
7
Optical technologies for the detection of viruses like COVID-19: Progress and prospects.
Biosens Bioelectron. 2021 Apr 15;178:113004. doi: 10.1016/j.bios.2021.113004. Epub 2021 Jan 16.
8
Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation.
PLoS Pathog. 2020 Jul 8;16(7):e1008656. doi: 10.1371/journal.ppat.1008656. eCollection 2020 Jul.
9
Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin.
Chembiochem. 2020 Nov 2;21(21):2999-3025. doi: 10.1002/cbic.202000238. Epub 2020 Jul 2.
10
Toward a new picture of the living plasma membrane.
Protein Sci. 2020 Jun;29(6):1355-1365. doi: 10.1002/pro.3874. Epub 2020 May 22.

本文引用的文献

1
Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy.
Biophys J. 2012 Apr 4;102(7):1534-42. doi: 10.1016/j.bpj.2012.02.022. Epub 2012 Apr 3.
2
Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4869-74. doi: 10.1073/pnas.1116425109. Epub 2012 Mar 12.
3
The formation and stability of DC-SIGN microdomains require its extracellular moiety.
Traffic. 2012 May;13(5):715-26. doi: 10.1111/j.1600-0854.2012.01337.x. Epub 2012 Feb 27.
5
DC-SIGN as a receptor for phleboviruses.
Cell Host Microbe. 2011 Jul 21;10(1):75-88. doi: 10.1016/j.chom.2011.06.007.
6
DC-SIGN and influenza hemagglutinin dynamics in plasma membrane microdomains are markedly different.
Biophys J. 2011 Jun 8;100(11):2662-70. doi: 10.1016/j.bpj.2011.04.044.
7
Spatial control of EGF receptor activation by reversible dimerization on living cells.
Nature. 2010 Apr 1;464(7289):783-7. doi: 10.1038/nature08827. Epub 2010 Mar 7.
8
Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor.
Mol Immunol. 2010 Jan;47(4):840-8. doi: 10.1016/j.molimm.2009.09.036. Epub 2009 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验