Institute of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.
Chaos. 2012 Sep;22(3):033143. doi: 10.1063/1.4749794.
Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases ("mono-interaction network"). Yet, many real-world networks-for example neuronal circuits-are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.
在什么条件下,脉冲耦合振荡器网络可以维持稳定的集体活动状态?此前已经表明,如果相互作用要么全部提前,要么全部延迟振荡相位(“单相互作用网络”),那么在对称脉冲耦合振荡器网络中,可以以严格的数学方式决定最简单模式的稳定性,即全局同步。然而,许多现实世界的网络——例如神经元回路——是不对称的,并且关键是具有这两种类型的相互作用。在这里,我们研究兴奋性(相位提前)和抑制性(相位延迟)泄漏积分和点火(LIF)振荡器的复杂网络。我们表明,对于小的耦合强度,单相互作用网络的先前结果也适用于此处:如果脉冲时间扰动小于传输延迟,并且线性稳定性算子的所有特征值的绝对值小于或等于一,那么它们最终会衰减。在这种情况下,为了确保同步的局部稳定性,抑制水平通常必须比兴奋水平显著更强。然而,对于更强的耦合,网络同步最终会对任何有限的扰动变得不稳定,即使抑制很强,并且稳定性算子的所有特征值都最多为一。当任何振荡器尽管平均从网络接收抑制性输入,但由于偶然接收足够的兴奋性输入而在系统中的所有其他脉冲传递之前触发脉冲时,就会发生这种新类型的不稳定性,从而破坏了近乎同步的扰动模式。