NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Vic 3842, Australia.
Biosens Bioelectron. 2013 Feb 15;40(1):377-84. doi: 10.1016/j.bios.2012.08.012. Epub 2012 Aug 25.
The preparation of two electrochemical (potentiometric and amperometric) phosphate biosensors is described and compared. Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XOD) were co-immobilized via entrapment into polypyrrole (PPy) films by galvanostatic polymerization. Polypyrrole entrapment was achieved with 0.5M pyrrole by using a polymerization time of 200 s and a mole ratio of 1:8 (6.2U/mL XOD: 49.6 U/mL PNP) in amperometric phosphate biosensor. Potentiometric bi-layer biosensor PPy-NO(3)/BSA-GLA-PNP-XOD is made of an inner electropolymerized PPy-NO(3) layer and an outer layer of PNP and XOD cross-linked with a mixture of bovine serum albumen (BSA) and gultaraldehyde (GLA).The optimum conditions for potentiometric bi-layer biosensor include a polymerization time of 300 s for the inner layer at an applied current density of 0.25 mA cm(-2), a drying time of 30 min for the outer layer, pH 7, and 0.025MTris-HCl. Sensitive amperometric measurements obtained from PPy-PNP-XOD-Fe(CN)(6)(4-) biosensors were compared with those of potentiometric measurements obtained from PPy-NO(3)/BSA/GLA-PNP-XOD bi-layer biosensor. A minimum detectable concentration of 20.0 μM phosphates and a linear concentration range of 20-200 μM were achieved with potentiometric PPy-NO(3)/BSA/GLA-PNP-XOD biosensor. In comparison, a minimum detectable concentration of 10 μM and a linear concentration range of 0.1-1 mM were achieved with amperometric biosensor. The presence of uric and ascorbic acids had the least effect on the performance of the PPy-PNP-XOD-Fe(CN)(6)(4-) amperometric and PPy-NO(3)/BSA/GLA-PNP-XOD potentiometric bi-biosensors, therefore, they will not have any effect on phosphate measurement in both biosensors at levels normally present in water. PPy-NO(3)/BSA-GLA-PNP-XOD potentiometric biosensor was used to analyse phosphate in real samples.
描述并比较了两种电化学(电位和电流)磷酸盐生物传感器的制备。嘌呤核苷磷酸化酶(PNP)和黄嘌呤氧化酶(XOD)通过电化学聚合被共包埋在聚吡咯(PPy)薄膜中。在安培磷酸盐生物传感器中,通过电化学聚合在 0.5M 吡咯中实现聚吡咯包埋,聚合时间为 200s,摩尔比为 1:8(6.2U/mL XOD:49.6 U/mL PNP)。电位双层生物传感器 PPy-NO(3)/BSA-GLA-PNP-XOD 由内层电聚合的 PPy-NO(3)层和外层 PNP 和 XOD 组成,外层 PNP 和 XOD 与牛血清白蛋白(BSA)和戊二醛(GLA)的混合物交联。电位双层生物传感器的最佳条件包括内层聚合时间为 300s,应用电流密度为 0.25mA/cm(-2),外层干燥时间为 30min,pH 值为 7,0.025MTris-HCl。从 PPy-PNP-XOD-Fe(CN)(6)(4-)生物传感器获得的灵敏安培测量值与从 PPy-NO(3)/BSA/GLA-PNP-XOD 双层生物传感器获得的电位测量值进行了比较。使用电位 PPy-NO(3)/BSA/GLA-PNP-XOD 生物传感器,可检测到 20.0μM 磷酸盐的最小检测浓度和 20-200μM 的线性浓度范围。相比之下,使用安培生物传感器可检测到 10μM 的最小检测浓度和 0.1-1mM 的线性浓度范围。尿酸和抗坏血酸的存在对 PPy-PNP-XOD-Fe(CN)(6)(4-)安培生物传感器和 PPy-NO(3)/BSA/GLA-PNP-XOD 电位生物传感器的性能影响最小,因此,它们在这两种生物传感器中不会对通常存在于水中的磷酸盐测量产生任何影响。PPy-NO(3)/BSA-GLA-PNP-XOD 电位生物传感器用于分析实际样品中的磷酸盐。