Department of Cardiology, Shanghai 6th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China.
Cardiovasc Res. 2013 Jan 1;97(1):77-87. doi: 10.1093/cvr/cvs309. Epub 2012 Oct 1.
Doxorubicin causes damage to the heart, often leading to irreversible cardiomyopathy, which is fatal. Reactive oxygen species (ROS) or oxidative stress is involved in cardiomyocyte death, contributing to doxorubicin-induced cardiotoxicity. This study investigated the role of Rac1, an important subunit of NADPH oxidase, in doxorubicin-induced cardiotoxicity and the underlying mechanisms.
In a mouse model of acute doxorubicin-induced cardiotoxicity, cardiomyocyte-specific deletion of Rac1 inhibited NADPH oxidase activation and ROS production, prevented cardiac cell death, and improved myocardial function in Rac1 knockout mice. Therapeutic administration of the specific Rac1 inhibitor NSC23766 achieved similar cardio-protective effects in doxorubicin-stimulated mice. In rat cardiomyoblasts (H9c2 cells) and cultured neonatal mouse cardiomyocytes, Rac1 inhibition attenuated apoptosis as evidenced by decreases in caspase-3 activity and DNA fragmentation in response to doxorubicin, which correlated with a reduction in ROS production and down-regulation of p53 acetylation and histone H2AX phosphorylation. In contrast, overexpression of Rac1 enhanced apoptosis. Doxorubicin also inhibited the activity of classical histone deacetylases (HDAC), which was preserved by Rac1 inhibition and further decreased by Rac1 overexpression. Interestingly, scavenging ROS mitigated apoptosis but did not change HDAC activity and p53 acetylation stimulated by doxorubicin, suggesting both ROS-dependent and -independent pathways are involved in Rac1-mediated cardiotoxicity. Furthermore, the HDAC inhibitor trichostatin A enhanced apoptosis, p53 acetylation and H2AX phosphorylation in doxorubicin-treated cardiomyocytes.
Rac1 signalling contributes to doxorubicin-induced cardiotoxicity through both a ROS-dependent mechanism and ROS-independent HDAC/p53 signalling in cardiomyocytes. Thus, inhibition of Rac1 may be a useful therapy for doxorubicin-induced cardiotoxicity.
多柔比星会对心脏造成损伤,常常导致不可逆的心肌病,从而危及生命。活性氧(ROS)或氧化应激参与了心肌细胞的死亡,导致多柔比星引起的心脏毒性。本研究旨在探讨 NADPH 氧化酶的重要亚基 Rac1 在多柔比星诱导的心脏毒性中的作用及其潜在机制。
在急性多柔比星诱导的心脏毒性的小鼠模型中,心肌细胞特异性敲除 Rac1 抑制了 NADPH 氧化酶的激活和 ROS 的产生,防止了心脏细胞死亡,并改善了 Rac1 敲除小鼠的心肌功能。特异性 Rac1 抑制剂 NSC23766 的治疗给药在多柔比星刺激的小鼠中也实现了类似的心脏保护作用。在大鼠心肌细胞(H9c2 细胞)和培养的新生小鼠心肌细胞中,Rac1 抑制作用通过降低 caspase-3 活性和 DNA 片段化来减轻多柔比星诱导的细胞凋亡,这与 ROS 产生减少和 p53 乙酰化和组蛋白 H2AX 磷酸化下调相关。相比之下,Rac1 的过表达增强了细胞凋亡。多柔比星还抑制了经典组蛋白去乙酰化酶(HDAC)的活性,而 Rac1 抑制作用可以保留该活性,Rac1 的过表达进一步降低了该活性。有趣的是,清除 ROS 减轻了细胞凋亡,但没有改变多柔比星刺激引起的 HDAC 活性和 p53 乙酰化,表明 Rac1 介导的心脏毒性涉及 ROS 依赖性和非依赖性途径。此外,HDAC 抑制剂曲古抑菌素 A 在多柔比星处理的心肌细胞中增强了细胞凋亡、p53 乙酰化和 H2AX 磷酸化。
Rac1 信号通过 ROS 依赖性机制和 ROS 非依赖性 HDAC/p53 信号在心肌细胞中导致多柔比星诱导的心脏毒性。因此,抑制 Rac1 可能是治疗多柔比星诱导的心脏毒性的一种有效方法。