Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576.
ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5562-9. doi: 10.1021/am3014482. Epub 2012 Oct 15.
An improved convective self-assembly method was developed to fabricate crack-free colloidal crystal heterostructure over a relatively large area. A composite opaline heterostructure composed of polystyrene (PS) colloids was first fabricated. Subsequent calcination of the opaline heterostructure led to the formation of inverse opaline heterostructure composed of SiO(2) or TiO(2). Both opaline and inverse opaline heterostructures demonstrated long-range ordering in a relatively large domain (>100 × 100 μm(2)). Optical reflection measurements of the inverse opaline heterostructures showed dual stop bands as a consequence of the superposition of the stop bands from the individual compositional colloidal crystals (CCs). In addition, the relative position of the two stop bands can be adjusted by varying the size of the colloidal spheres in the original CCs template. Both types of colloidal crystal heterostructures can be used for optical filters, high-efficiency back-reflectors or electrodes in solar cells, differential drug release, and protein patterning.
一种改进的对流自组装方法被开发出来,以在相对较大的区域上制造无裂纹胶体晶体异质结构。首先制备了由聚苯乙烯(PS)胶体组成的复合蛋白石异质结构。随后对蛋白石异质结构进行煅烧,形成由 SiO(2) 或 TiO(2) 组成的反蛋白石异质结构。蛋白石和反蛋白石异质结构都在相对较大的区域(>100×100μm(2))表现出长程有序性。反蛋白石异质结构的光学反射测量显示出双截止带,这是由于单个组成胶体晶体(CCs)的截止带的叠加。此外,两个截止带的相对位置可以通过改变原始 CCs 模板中胶体球的大小来调节。这两种类型的胶体晶体异质结构都可以用于光学滤波器、高效背反射器或太阳能电池中的电极、差异药物释放和蛋白质图案化。