Suppr超能文献

混沌网络中的随机对称性破缺与冻结

Random symmetry breaking and freezing in chaotic networks.

作者信息

Peleg Y, Kinzel W, Kanter I

机构信息

Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036212. doi: 10.1103/PhysRevE.86.036212. Epub 2012 Sep 21.

Abstract

Parameter space of a driven damped oscillator in a double well potential presents either a chaotic trajectory with sign oscillating amplitude or a nonchaotic trajectory with a fixed sign amplitude. A network of such delay coupled damped oscillators is shown to present chaotic dynamics while the sign amplitude of each damped oscillator is randomly frozen. This phenomenon of random broken global symmetry of the network simultaneous with random freezing of each degree of freedom is accompanied by the existence of exponentially many randomly frozen chaotic attractors with the size of the network. Results are exemplified by a network of modified Duffing oscillators with infinite range pseudoinverse delayed interactions.

摘要

在双势阱中受驱动的阻尼振子的参数空间呈现出要么是具有符号振荡幅度的混沌轨迹,要么是具有固定符号幅度的非混沌轨迹。这样一个由延迟耦合阻尼振子组成的网络被证明在每个阻尼振子的符号幅度被随机冻结时呈现出混沌动力学。网络的这种随机破坏全局对称性同时每个自由度随机冻结的现象伴随着存在指数级数量的与网络规模相关的随机冻结混沌吸引子。结果以具有无限范围伪逆延迟相互作用的修正杜芬振子网络为例进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验