Suppr超能文献

新型振动训练仪,具有专用自适应滤波功能,用于肌电研究神经肌肉激活。

Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation.

机构信息

Faculty of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):275-82. doi: 10.1109/TNSRE.2012.2219555. Epub 2012 Sep 27.

Abstract

Vibration exercise (VE) has been suggested as an effective methodology to improve muscle strength and power performance. Several studies link the effects of vibration training to enhanced neuromuscular demand, typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the identification of the most appropriate vibration training protocols. This study concerns the realization of a new vibration exercise system for the upper limbs. Amplitude, frequency, and baseline of the vibrating force, which is generated by an electromechanical actuator, can be adjusted independently. A second order model is employed to identify the relation between the generated force and the input voltage driving the actuator. Our results show a high correlation (0.99) between the second order model fit and the measured data, ensuring accurate control on the supplied force. The level of neuromuscular demand imposed by the system on the targeted muscles can be estimated by electromyography (EMG). However, EMG measurements during VE can be severely affected by motion artifacts. An adaptive least mean square algorithm is proposed to remove motion artifacts from the measured EMG data. Preliminary validation with seven volunteers showed excellent motion artifact removal, enabling reliable evaluation of the neuromuscular activation.

摘要

振动训练(VE)被认为是一种提高肌肉力量和表现的有效方法。多项研究将振动训练的效果与增强的神经肌肉需求联系起来,通常归因于无意识的反射机制。然而,其潜在的机制仍不清楚,限制了确定最合适的振动训练方案。本研究涉及一种用于上肢的新型振动训练系统的实现。由机电执行器产生的振动力的幅度、频率和基线可以独立调节。采用二阶模型来确定产生的力与驱动执行器的输入电压之间的关系。我们的结果显示,二阶模型拟合与测量数据之间具有高度相关性(0.99),确保了对供应力的精确控制。系统对目标肌肉施加的神经肌肉需求水平可以通过肌电图(EMG)进行估计。然而,VE 期间的 EMG 测量可能会受到运动伪影的严重影响。提出了一种自适应最小均方算法来从测量的 EMG 数据中去除运动伪影。对 7 名志愿者进行的初步验证表明,该算法能够很好地去除运动伪影,从而能够可靠地评估神经肌肉的激活情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验