Suppr超能文献

一种用于理解皮层图谱的降维框架。

A dimension reduction framework for understanding cortical maps.

作者信息

Durbin R, Mitchison G

机构信息

Department of Psychology, Stanford University, California 94305.

出版信息

Nature. 1990 Feb 15;343(6259):644-7. doi: 10.1038/343644a0.

Abstract

We argue that cortical maps, such as those for ocular dominance, orientation and retinotopic position in primary visual cortex, can be understood in terms of dimension-reducing mappings from many-dimensional parameter spaces to the surface of the cortex. The goal of these mappings is to preserve as far as possible neighbourhood relations in parameter space so that local computations in parameter space can be performed locally in the cortex. We have found that, in a simple case, certain self-organizing models generate maps that are near-optimally local, in the sense that they come close to minimizing the neuronal wiring required for local operations. When these self-organizing models are applied to the task of simultaneously mapping retinotopic position and orientation, they produce maps with orientation vortices resembling those produced in primary visual cortex. This approach also yields a new prediction, which is that the mapping of position in visual cortex will be distorted in the orientation fracture zones.

摘要

我们认为,诸如初级视觉皮层中眼优势、方向和视网膜拓扑位置等皮层图谱,可以通过从多维参数空间到皮层表面的降维映射来理解。这些映射的目标是尽可能保留参数空间中的邻域关系,以便在参数空间中进行的局部计算能够在皮层中局部执行。我们发现,在一个简单的情况下,某些自组织模型生成的图谱在局部性方面近乎最优,也就是说,它们接近最小化局部操作所需的神经元连接。当将这些自组织模型应用于同时映射视网膜拓扑位置和方向的任务时,它们会产生具有类似于初级视觉皮层中方向漩涡的图谱。这种方法还产生了一个新的预测,即视觉皮层中位置的映射在方向断裂区域会发生扭曲。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验