Suppr超能文献

药物鸡尾酒网络

The drug cocktail network.

作者信息

Xu Ke-Jia, Song Jiangning, Zhao Xing-Ming

机构信息

Institute of Systems Biology, Shanghai University, Shanghai, China.

出版信息

BMC Syst Biol. 2012;6 Suppl 1(Suppl 1):S5. doi: 10.1186/1752-0509-6-S1-S5. Epub 2012 Jul 16.

Abstract

BACKGROUND

Combination of different agents is widely used in clinic to combat complex diseases with improved therapy and reduced side effects. However, the identification of effective drug combinations remains a challenging task due to the huge number of possible combinations among candidate drugs that makes it impractical to screen putative combinations.

RESULTS

In this work, we construct a 'drug cocktail network' using all the known effective drug combinations extracted from the Drug Combination Database (DCDB), and propose a network-based approach to investigate drug combinations. Our results show that the agents in an effective combination tend to have more similar therapeutic effects and share more interaction partners. Based on our observations, we further develop a statistical approach termed as DCPred (Drug Combination Predictor) to predict possible drug combinations by exploiting the topological features of the drug cocktail network. Validating on the known drug combinations, DCPred achieves the overall AUC (Area Under the receiver operating characteristic Curve) score of 0.92, indicating the predictive power of our proposed approach.

CONCLUSIONS

The drug cocktail network constructed in this work provides useful insights into the underlying rules of effective drug combinations and offer important clues to accelerate the future discovery of new drug combinations.

摘要

背景

不同药物联合在临床上被广泛用于治疗复杂疾病,以提高疗效并减少副作用。然而,由于候选药物之间存在大量可能的组合,使得筛选潜在组合不切实际,因此确定有效的药物组合仍然是一项具有挑战性的任务。

结果

在这项工作中,我们利用从药物组合数据库(DCDB)中提取的所有已知有效药物组合构建了一个“药物鸡尾酒网络”,并提出了一种基于网络的方法来研究药物组合。我们的结果表明,有效组合中的药物往往具有更相似的治疗效果,并且共享更多的相互作用伙伴。基于我们的观察结果,我们进一步开发了一种称为DCPred(药物组合预测器)的统计方法,通过利用药物鸡尾酒网络的拓扑特征来预测可能的药物组合。在已知药物组合上进行验证时,DCPred的总体AUC(受试者工作特征曲线下面积)得分为0.92,表明我们提出的方法具有预测能力。

结论

本研究构建的药物鸡尾酒网络为有效药物组合的潜在规律提供了有用的见解,并为加速未来新药组合的发现提供了重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f4a/3403482/b1e6dc052c57/1752-0509-6-S1-S5-1.jpg

相似文献

1
The drug cocktail network.
BMC Syst Biol. 2012;6 Suppl 1(Suppl 1):S5. doi: 10.1186/1752-0509-6-S1-S5. Epub 2012 Jul 16.
2
Exploring drug combinations in genetic interaction network.
BMC Bioinformatics. 2012 May 8;13 Suppl 7(Suppl 7):S7. doi: 10.1186/1471-2105-13-S7-S7.
3
Large-scale exploration and analysis of drug combinations.
Bioinformatics. 2015 Jun 15;31(12):2007-16. doi: 10.1093/bioinformatics/btv080. Epub 2015 Feb 8.
4
Predicting combinative drug pairs via multiple classifier system with positive samples only.
Comput Methods Programs Biomed. 2019 Jan;168:1-10. doi: 10.1016/j.cmpb.2018.11.002. Epub 2018 Nov 15.
6
Neighbor communities in drug combination networks characterize synergistic effect.
Mol Biosyst. 2012 Oct 30;8(12):3185-96. doi: 10.1039/c2mb25267h.
7
PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm.
J Theor Biol. 2017 Mar 21;417:1-7. doi: 10.1016/j.jtbi.2017.01.019. Epub 2017 Jan 16.
8
Interaction network among functional drug groups.
BMC Syst Biol. 2013 Oct 16;7 Suppl 3(Suppl 3):S4. doi: 10.1186/1752-0509-7-S3-S4.
9
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures.
PLoS One. 2019 Aug 1;14(8):e0219796. doi: 10.1371/journal.pone.0219796. eCollection 2019.
10
Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
Acta Biotheor. 2018 Dec;66(4):315-331. doi: 10.1007/s10441-018-9325-z. Epub 2018 Apr 26.

引用本文的文献

2
4
LigAdvisor: a versatile and user-friendly web-platform for drug design.
Nucleic Acids Res. 2021 Jul 2;49(W1):W326-W335. doi: 10.1093/nar/gkab385.
5
An In Silico Method for Predicting Drug Synergy Based on Multitask Learning.
Interdiscip Sci. 2021 Jun;13(2):299-311. doi: 10.1007/s12539-021-00422-x. Epub 2021 Feb 21.
6
In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data.
Sci Rep. 2019 Jun 20;9(1):8949. doi: 10.1038/s41598-019-45236-6.
7
A simple gene set-based method accurately predicts the synergy of drug pairs.
BMC Syst Biol. 2016 Aug 26;10 Suppl 3(Suppl 3):66. doi: 10.1186/s12918-016-0310-3.
9
A survey on the computational approaches to identify drug targets in the postgenomic era.
Biomed Res Int. 2015;2015:239654. doi: 10.1155/2015/239654. Epub 2015 Apr 28.
10
A Network-Based Target Overlap Score for Characterizing Drug Combinations: High Correlation with Cancer Clinical Trial Results.
PLoS One. 2015 Jun 5;10(6):e0129267. doi: 10.1371/journal.pone.0129267. eCollection 2015.

本文引用的文献

1
Prediction of drug combinations by integrating molecular and pharmacological data.
PLoS Comput Biol. 2011 Dec;7(12):e1002323. doi: 10.1371/journal.pcbi.1002323. Epub 2011 Dec 29.
2
An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data.
Bioinformatics. 2011 Jul 1;27(13):i310-6. doi: 10.1093/bioinformatics/btr202.
3
A systems biology approach to identify effective cocktail drugs.
BMC Syst Biol. 2010 Sep 13;4 Suppl 2(Suppl 2):S7. doi: 10.1186/1752-0509-4-S2-S7.
4
Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism.
Bioinformatics. 2010 Sep 15;26(18):i547-53. doi: 10.1093/bioinformatics/btq382.
5
Protein dynamics in drug combinations: a linear superposition of individual-drug responses.
Cell. 2010 Mar 5;140(5):643-51. doi: 10.1016/j.cell.2010.02.011.
6
DCDB: drug combination database.
Bioinformatics. 2010 Feb 15;26(4):587-8. doi: 10.1093/bioinformatics/btp697. Epub 2009 Dec 23.
8
Synergistic drug combinations tend to improve therapeutically relevant selectivity.
Nat Biotechnol. 2009 Jul;27(7):659-66. doi: 10.1038/nbt.1549. Epub 2009 Jul 5.
9
Automatic modeling of signaling pathways by network flow model.
J Bioinform Comput Biol. 2009 Apr;7(2):309-22. doi: 10.1142/s0219720009004138.
10
Search algorithms as a framework for the optimization of drug combinations.
PLoS Comput Biol. 2008 Dec;4(12):e1000249. doi: 10.1371/journal.pcbi.1000249. Epub 2008 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验