Xu Ke-Jia, Song Jiangning, Zhao Xing-Ming
Institute of Systems Biology, Shanghai University, Shanghai, China.
BMC Syst Biol. 2012;6 Suppl 1(Suppl 1):S5. doi: 10.1186/1752-0509-6-S1-S5. Epub 2012 Jul 16.
Combination of different agents is widely used in clinic to combat complex diseases with improved therapy and reduced side effects. However, the identification of effective drug combinations remains a challenging task due to the huge number of possible combinations among candidate drugs that makes it impractical to screen putative combinations.
In this work, we construct a 'drug cocktail network' using all the known effective drug combinations extracted from the Drug Combination Database (DCDB), and propose a network-based approach to investigate drug combinations. Our results show that the agents in an effective combination tend to have more similar therapeutic effects and share more interaction partners. Based on our observations, we further develop a statistical approach termed as DCPred (Drug Combination Predictor) to predict possible drug combinations by exploiting the topological features of the drug cocktail network. Validating on the known drug combinations, DCPred achieves the overall AUC (Area Under the receiver operating characteristic Curve) score of 0.92, indicating the predictive power of our proposed approach.
The drug cocktail network constructed in this work provides useful insights into the underlying rules of effective drug combinations and offer important clues to accelerate the future discovery of new drug combinations.
不同药物联合在临床上被广泛用于治疗复杂疾病,以提高疗效并减少副作用。然而,由于候选药物之间存在大量可能的组合,使得筛选潜在组合不切实际,因此确定有效的药物组合仍然是一项具有挑战性的任务。
在这项工作中,我们利用从药物组合数据库(DCDB)中提取的所有已知有效药物组合构建了一个“药物鸡尾酒网络”,并提出了一种基于网络的方法来研究药物组合。我们的结果表明,有效组合中的药物往往具有更相似的治疗效果,并且共享更多的相互作用伙伴。基于我们的观察结果,我们进一步开发了一种称为DCPred(药物组合预测器)的统计方法,通过利用药物鸡尾酒网络的拓扑特征来预测可能的药物组合。在已知药物组合上进行验证时,DCPred的总体AUC(受试者工作特征曲线下面积)得分为0.92,表明我们提出的方法具有预测能力。
本研究构建的药物鸡尾酒网络为有效药物组合的潜在规律提供了有用的见解,并为加速未来新药组合的发现提供了重要线索。