Systems Medicine and Bioengineering Department, Cornell University, Houston, TX 77030, USA.
Bioinformatics. 2011 Jul 1;27(13):i310-6. doi: 10.1093/bioinformatics/btr202.
Prediction of synergistic effects of drug combinations has traditionally been relied on phenotypic response data. However, such methods cannot be used to identify molecular signaling mechanisms of synergistic drug combinations. In this article, we propose an enhanced Petri-Net (EPN) model to recognize the synergistic effects of drug combinations from the molecular response profiles, i.e. drug-treated microarray data.
We addressed the downstream signaling network of the targets for the two individual drugs used in the pairwise combinations and applied EPN to the identified targeted signaling network. In EPN, drugs and signaling molecules are assigned to different types of places, while drug doses and molecular expressions are denoted by color tokens. The changes of molecular expressions caused by treatments of drugs are simulated by two actions of EPN: firing and blasting. Firing is to transit the drug and molecule tokens from one node or place to another, and blasting is to reduce the number of molecule tokens by drug tokens in a molecule node. The goal of EPN is to mediate the state characterized by control condition without any treatment to that of treatment and to depict the drug effects on molecules by the drug tokens.
We applied EPN to our generated pairwise drug combination microarray data. The synergistic predictions using EPN are consistent with those predicted using phenotypic response data. The molecules responsible for the synergistic effects with their associated feedback loops display the mechanisms of synergism.
The software implemented in Python 2.7 programming language is available from request.
传统上,药物组合协同作用的预测依赖于表型反应数据。然而,这些方法不能用于识别协同药物组合的分子信号机制。在本文中,我们提出了一种增强的 Petri 网 (EPN) 模型,用于从分子反应谱(即药物处理的微阵列数据)中识别药物组合的协同作用。
我们针对两种药物组合中使用的两种个体药物的下游信号转导网络,并将 EPN 应用于已识别的靶向信号转导网络。在 EPN 中,药物和信号分子被分配到不同类型的位置,而药物剂量和分子表达则用颜色标记表示。通过 EPN 的两种操作来模拟药物处理引起的分子表达变化:激发和爆破。激发是将药物和分子标记从一个节点或位置转移到另一个节点或位置,而爆破是通过药物标记减少分子节点中的分子标记数量。EPN 的目标是将没有任何处理的控制条件下的状态调节到处理后的状态,并通过药物标记来描述药物对分子的影响。
我们将 EPN 应用于我们生成的成对药物组合微阵列数据。使用 EPN 进行的协同预测与使用表型反应数据进行的预测一致。协同作用的分子及其相关反馈回路显示出协同作用的机制。
用 Python 2.7 编程语言实现的软件可根据要求提供。