Suppr超能文献

医学图像计算中的图像分析与建模。最新进展

Image analysis and modeling in medical image computing. Recent developments and advances.

作者信息

Handels H, Deserno T M, Meinzer H-P, Tolxdorff T

机构信息

University of Lübeck, Institute of Medical Informatics, Ratzeburger Allee 160, 23538 Lübeck, Germany.

出版信息

Methods Inf Med. 2012;51(5):395-7.

Abstract

BACKGROUND

Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine.

OBJECTIVES

In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients.

METHODS

Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review.

RESULTS

Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods.

CONCLUSIONS

The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

摘要

背景

医学图像计算在医学诊断和图像引导治疗中日益重要。如今,集成了先进图像计算方法的图像分析系统已在实际中得到应用,例如用于提取定量图像参数或在导航介入过程中为外科医生提供支持。然而,医学图像计算方法的自动化程度、准确性、可重复性和稳健性仍需提高,以满足临床常规的要求。

目的

在本重点主题中,描述了建模和基于模型的图像分析领域的最新进展。在图像分析过程中引入模型能够在自动化、准确性、可重复性和稳健性方面改进图像分析算法。此外,基于模型的图像计算技术为器官变化预测和患者风险分析开辟了新的视角。

方法

挑选了相关论文来展示该领域的最新进展。邀请作者基于他们对在德国吕贝克大学举行的2011年医学图像计算BVM会议的杰出贡献,介绍他们的近期工作和成果。所有稿件都必须经过全面的同行评审。

结果

描述了在基于模型的医学图像计算中呈现新趋势和新视角的建模方法和基于模型的图像分析方法。复杂模型被应用于不同的医学应用和医学图像,如射线照相图像、双能CT图像、MR图像、扩散张量图像以及微观图像等,并对其进行了分析。这些应用强调了这些方法的巨大潜力和广泛应用范围。

结论

使用基于模型的图像分析方法可以提高分割质量以及定量图像分析的准确性和可重复性。此外,基于图像的模型能够带来新的见解,并有助于更深入地理解人体复杂的动态机制。因此,基于模型的图像计算方法是未来改善医学诊断和患者治疗的重要工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验