Suppr超能文献

同步出芽酵母群体的细胞质量和细胞周期动态:实验观察、流式细胞术数据分析和多尺度建模。

Cell mass and cell cycle dynamics of an asynchronous budding yeast population: experimental observations, flow cytometry data analysis, and multi-scale modeling.

机构信息

Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Biotechnol Bioeng. 2013 Mar;110(3):812-26. doi: 10.1002/bit.24749. Epub 2012 Nov 12.

Abstract

Despite traditionally regarded as identical, cells in a microbial cultivation present a distribution of phenotypic traits, forming a heterogeneous cell population. Moreover, the degree of heterogeneity is notably enhanced by changes in micro-environmental conditions. A major development in experimental single-cell studies has taken place in the last decades. It has however not been fully accompanied by similar contributions within data analysis and mathematical modeling. Indeed, literature reporting, for example, quantitative analyses of experimental single-cell observations and validation of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate consumption observed during batch cultivation. The good agreement between the proposed multi-scale model (a population balance model [PBM] coupled to an unstructured model) and experimental data (both the overall physiology and cell size and cell cycle distributions) indicates that a mechanistic model is a suitable tool for describing the microbial population dynamics in a bioreactor. This study therefore contributes towards the understanding of the development of heterogeneous populations during microbial cultivations. More generally, it consists of a step towards a paradigm change in the study and description of cell cultivations, where average cell behaviors observed experimentally now are interpreted as a potential joint result of various co-existing single-cell behaviors, rather than a unique response common to all cells in the cultivation.

摘要

尽管传统上认为微生物培养中的细胞是相同的,但它们表现出表型特征的分布,形成了异质细胞群体。此外,微环境条件的变化显著增强了异质性的程度。在过去几十年中,实验单细胞研究取得了重大进展。然而,在数据分析和数学建模方面并没有得到类似的贡献。事实上,文献报道,例如,对实验单细胞观察的定量分析,以及针对细胞特性分布的模型预测与实验数据的验证,都很稀缺。本研究专注于描述酵母细胞大小和细胞周期位置分布的动力学,该种群对分批培养过程中观察到的基质消耗做出响应。所提出的多尺度模型(种群平衡模型[PBM]与非结构化模型耦合)与实验数据(整体生理学以及细胞大小和细胞周期分布)之间的良好一致性表明,一个机制模型是描述生物反应器中微生物种群动力学的合适工具。因此,本研究有助于理解微生物培养过程中异质群体的发展。更一般地说,这是在细胞培养研究和描述方面范式转变的一步,其中现在从实验中观察到的平均细胞行为被解释为各种共存单细胞行为的潜在共同结果,而不是培养中所有细胞的共同反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验