Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
Phys Chem Chem Phys. 2012 Nov 28;14(44):15429-37. doi: 10.1039/c2cp42961f. Epub 2012 Oct 15.
The ultrafast photoinjection and subsequent relaxation steps of the indoline dye D149 were investigated in detail for a mesoporous electrodeposited ZnO thin film and compared with experiments on sintered TiO(2) and ZrO(2) thin films, all in contact with air, using pump-supercontinuum probe (PSCP) transient absorption spectroscopy in the range 370-770 nm. D149 efficiently injects electrons into the ZnO surface with time constants from ≤70 fs (time-resolution-limited) up to 250 fs, without the presence of slower components. Subsequent spectral dynamics with a time constant of 20 ps and no accompanying change in the oscillator strength are assigned to a transient Stark shift of the electronic absorption spectrum of D149 molecules in the electronic ground state due to the local electric field exerted by the D149˙(+) radical cations and conduction band electrons in ZnO. This interpretation is consistent with the shape of the relaxed PSCP spectrum at long times, which resembles the first derivative of the inverted steady-state absorption spectrum of D149. In addition, steady-state difference absorption spectra of D149˙(+) in solution from spectroelectrochemistry display a bleach band with distinctly different position, because no first-order Stark effect is present in that case. Interference features in the PSCP spectra probably arise from a change of the refractive index of ZnO caused by the injected electrons. The 20 ps component in the PSCP spectra is likely a manifestation of the transition from an initially formed bound D149˙(+)-electron complex to isolated D149˙(+) and mobile electrons in the ZnO conduction band (which changes the external electric field experienced by D149) and possibly also reorientational motion of D149 molecules in response to the electric field. We identify additional spectral dynamics on a similar timescale, arising from vibrational relaxation of D149˙(+) by interactions with ZnO. TiO(2) exhibits similar dynamics to ZnO. In the case of ZrO(2), electron injection accesses trap states, which exhibit a substantial probability for charge recombination. No Stark shift is observed in this case. In addition, the spectroelectrochemical experiments for D149˙(+) in dichloromethane and acetonitrile, which cover the spectral range up to 2000 nm, provide for the first time access to its complete D(0)→ D(1) absorption band, with the peak located at 1250 and 1055 nm, respectively. Good agreement is obtained with results from DFT/TDDFT calculations of the D149˙(+) spectrum employing the MPW1K functional.
详细研究了吲哚染料 D149 在介孔电沉积 ZnO 薄膜中的超快光注入和随后的弛豫步骤,并与在空气中接触的烧结 TiO2 和 ZrO2 薄膜的实验进行了比较,所有实验均使用泵浦超连续探针 (PSCP) 瞬态吸收光谱在 370-770nm 范围内。D149 以小于 70fs(时间分辨率限制)至 250fs 的时间常数有效地将电子注入 ZnO 表面,而没有较慢的成分。具有 20ps 时间常数且没有伴随振子强度变化的后续光谱动力学被分配给 D149 分子在电子基态下的电子吸收光谱的瞬态斯塔克位移,这是由于 D149˙(+)自由基阳离子和 ZnO 导带电子施加的局部电场。这种解释与长时间的弛豫 PSCP 光谱的形状一致,该形状类似于 D149 的倒置稳态吸收光谱的一阶导数。此外,来自光谱电化学的 D149˙(+)在溶液中的稳态差吸收光谱显示出一个明显不同位置的漂白带,因为在这种情况下不存在一阶斯塔克效应。PSCP 光谱中的干涉特征可能是由注入电子引起的 ZnO 折射率变化引起的。PSCP 光谱中的 20ps 分量可能是最初形成的束缚 D149˙(+)-电子复合物向 ZnO 导带中孤立的 D149˙(+)和可移动电子的转变的表现(这改变了 D149 经历的外部电场),并且可能也是 D149 分子对电场的重新取向运动的表现。我们在相似的时间尺度上识别出额外的光谱动力学,这是由 D149˙(+)与 ZnO 的振动弛豫引起的。TiO2 表现出与 ZnO 相似的动力学。在 ZrO2 的情况下,电子注入访问陷阱态,这些陷阱态具有很大的电荷复合概率。在这种情况下,没有观察到斯塔克位移。此外,D149˙(+)在二氯甲烷和乙腈中的光谱电化学实验,覆盖了高达 2000nm 的光谱范围,首次提供了其完整的 D(0)→D(1)吸收带的通道,其峰值分别位于 1250nm 和 1055nm。用 MPW1K 函数进行 DFT/TDDFT 计算得到的 D149˙(+)光谱的结果与实验结果吻合较好。